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EXHIBIT 3-1
GENERAL EQUATION FOR EXPOSURE

      Eq. 3-1

where,
I = daily intake
C = contaminant concentration

CR = contact rate (ingestion, inhalation,
dermal contact)

EF = exposure frequency
ED = exposure duration
BW = body weight
AT = averaging time

CHAPTER 3

USING PROBABILISTIC ANALYSIS IN HUMAN HEALTH ASSESSMENT

3.0 INTRODUCTION

This chapter outlines how probabilistic analysis may be applied to human health risk assessments
in the Environmental Protection Agency’s (EPA) Superfund program.  The paradigm for human health
risk assessment as described in EPA’s Risk Assessment Guidance for Superfund (U.S. EPA, 1989),
includes data collection/evaluation in addition to exposure and toxicity assessment and risk
characterization.  Although the strategies and methods used in collecting and analyzing data can
significantly impact the uncertainty in a risk estimate, they are issues relevant to risk assessment in
general, and are addressed in other guidance documents, such as EPA’s Guidance for Data Useability in
Risk Assessment (U.S. EPA, 1992b).  RAGS Volume 3: Part A focuses on a tiered approach for
incorporating quantitative information on variability and uncertainty into risk management decisions.

3.1 CHARACTERIZING VARIABILITY IN EXPOSURE VARIABLES

Exhibit 3-1 gives the general equation
used for calculating exposure, often expressed as
an average daily intake.  In a point estimate
approach, single values (typically a mixture of
average and high-end values) are input into the
equation.  In probabilistic risk assessment (PRA),
the only difference is that a probability
distribution, rather than single value, is specified
for one or more variables.  A Monte Carlo
simulation is executed by repeatedly selecting
random values from each of these distributions
and calculating the corresponding exposure and
risk.  For the majority of PRAs, it is expected that
probability distributions will be used to
characterize inter-individual variability, which
refers to true heterogeneity or diversity in a
population.  Thus, variability in daily intake, for
example, can be characterized by combining
multiple sources of variability in exposure, such
as ingestion rate, exposure frequency, exposure duration, and body weight.  Variability in chemical
concentrations (Chapter 5 and Appendix C) and the toxicity term in ecological risk assessment
(Chapter 4) may also be considered in risk calculations.
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EXHIBIT 3-2

DEFINITIONS FOR CHAPTER 3

95% UCL for mean - The one-sided 95% upper confidence limit for a population mean; if a sample of size (n) was
repeatedly drawn from the population, the 95% UCL will equal or exceed the true population mean 95% of the
time.  It is a measure of uncertainty in the mean, not to be confused with the 95th percentile (see below), which is a
measure of variability.  As sample size increases, the difference between the UCL for the mean and the true mean
decreases, while the 95th percentile of the distribution remains relatively unchanged. 

95th percentile - The number in a distribution that is greater than 95% of the other values of the distribution, and less
than 5% of the values.  When estimated from a sample, this quantity may be equal to an observed value, or
interpolated from among two values.

Arithmetic Mean (AM) - A number equal to the average value of a population or sample.  Usually obtained by
summing all the values in the sample and dividing by the number of values (i.e., sample size).

Assessment Endpoint - The specific expression of the population or ecosystem that is to be protected.  It can be
characterized both qualitatively and quantitatively in the risk assessment.

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in the population,
usually considered to be the arithmetic mean or median of the risk distribution.

Credible Interval - A range of values that represent plausible bounds on a population parameter.  Credible intervals may
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95th percentile risk). 
The term is introduced as an alternative to the term confidence interval when the methods used to quantify
uncertainty are not based entirely on statistical principles such as sampling distributions or Bayesian approaches. 
For example, multiple estimates of an arithmetic mean may be available from different studies reported in the
literature—using professional judgment, these estimates may support a decision to describe a range of possible
values for the arithmetic mean.

CTE Risk - The estimated risk corresponding to the central tendency exposure.
Cumulative Distribution Function (CDF) - Obtained by integrating the PDF or PMF, gives the cumulative probability

of occurrence for a random independent variable.  Each value c of the function is the probability that a random
observation x will be less than or equal to c.

Exposure Point Concentration (EPC) - The average chemical concentration to which receptors are exposed within an
exposure unit.  Estimates of the EPC represent the concentration term used in exposure assessment.

Frequency Distribution/Histogram - A graphic (plot) summarizing the frequency of the values observed or measured
from a population.  It conveys the range of values and the count (or proportion of the sample) that was observed
across that range.

High-end Risk - A risk descriptor representing the high-end, or upper tail of the risk distribution, usually considered to
be equal to or greater than the 90th percentile.

Low-end Risk - A risk descriptor representing the low-end, or lower tail of the risk distribution, such as the 5th or 25th

percentile.
.Parameter - A value that characterizes the distribution of a random variable.  Parameters commonly characterize the

location, scale, shape, or bounds of the distribution.  For example, a truncated normal probability distribution may
be defined by four parameters: arithmetic mean [location], standard deviation [scale], and min and max [bounds]. 
It is important to distinguish between a variable (e.g., ingestion rate) and a parameter (e.g., arithmetic mean
ingestion rate). 

Probability Density Function (PDF) - A function representing the probability distribution of a continuous random
variable.  The density at a point refers to the probability that the variable will have a value in a narrow range about
that point.

Probability Mass Function (PMF) - A function representing the probability distribution for a discrete random variable. 
The mass at a point refers to the probability that the variable will have a value at that point.

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site (U.S.
EPA, 1989).  The intent of the RME is to estimate a conservative exposure case (i.e., well above the average case)
that is still within the range of possible exposures.
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EXHIBIT 3-2

DEFINITIONS FOR CHAPTER 3—Continued

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the
values of the model’s input(s).  Sensitivity analysis can provide a quantitative ranking of the model inputs based
on their relative contributions to model output variability and uncertainty.  Common metrics of sensitivity include:

< Pearson Correlation Coefficient - A statistic r that measures the strength and direction of linear
association between the values of two quantitative variables.  The square of the coefficient (r2) is the
fraction of the variance of one variable that is explained by the variance of the second variable.

< Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called
elasticity.

< Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic r that
measures the strength and direction of association between the ranks of the values (not the values
themselves) of two quantitative variables.  See Pearson (above) for r2.

Target Population - The set of all receptors that are potentially at risk.  Sometimes referred to as the “population of
concern”.  A sample population is selected for statistical sampling in order to make inferences regarding the target
population (see Appendix B, Section B.3.1, Concepts of Populations and Sampling).
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Figure 3-1.  Example of a frequency distribution for adult drinking water ingestion rates, overlaid by
a graph of the probability density function (PDF) for a lognormal distribution defined by the sample
statistics.  The distribution represents inter-individual variability in water intakes and is characterized
by two parameters.  Typically, the geometric mean (GM) and geometric standard deviation (GSD), or
the arithmetic mean (AM) and arithmetic standard deviation (SD) are presented to characterize a
lognormal distribution.

Figure 3-1 shows a hypothetical example of an input distribution for drinking water ingestion
rate.  Assume that survey data for drinking water ingestion rates were compiled in order to select and fit a
probability distribution.  One of the first steps in exploring the data set may be to plot a frequency
distribution.  In the graph, the height of the bars (the y-axis) represents the relative frequency of ingestion
rates in the population and the spread of the bars (the x-axis) is the varying amounts of water ingested
(L/day).  Since ingestion rate is a continuous random variable, the probability distribution can also be
represented graphically with a probability density function (PDF).  Assume that the following parameters
are estimated from the sample: arithmetic mean=1.36, standard deviation=0.36, geometric mean=1.31,
and geometric standard deviation=1.30.  These parameter estimates may be used to define a variety of
probability distributions, including a 2-parameter lognormal distribution.  The fit of the lognormal
distribution can be evaluated by visual inspection using the PDF given by Figure 3-1, or by a lognormal
probability plot (see Appendix B).

The y-axis for a PDF is referred to as the probability density, where the density at a point on the
x-axis represents the probability that a variable will have a value within a narrow range about the point. 
This type of graph shows, for example, that there is a greater area under the curve (greater probability
density) in the 1-2 L/day range than 0-1 L/day or 2-3 L/day.  That is, most people reported consuming
1-2 L/day of drinking water.  By selecting a lognormal distribution to characterize inter-individual
variability, we can state more precisely that 1 L/day corresponds to the 15th percentile and 2 L/day
corresponds to the 95th percentile, so approximately 80% (i.e., 0.95–0.15=0.80) of the population is likely
to consume between 1 and 2 L/day of drinking water.
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3.1.1 DEVELOPING DISTRIBUTIONS FOR EXPOSURE VARIABLES

When site-specific data or representative surrogate data are available, a probability distribution
can be fit to that data to characterize variability.  Appendix B describes how to fit distributions to data,
how to assess the quality of the fit and discusses topics such as the sensitivity of the tails of the
distribution to various PDFs, and correlations among variables.  Many of the issues discussed below
regarding the use of site-specific data or surrogate data are relevant to both point estimate risk assessment
and PRA.  

For the majority of the exposure variables, such as exposure duration, water intake rates, and
body weight, site-specific data will not be available.  The risk assessor will have to either select a
distribution from existing sources, or develop a distribution from published data sets and data summaries. 
Examples of sources for these distributions and data sets are EPA’s Exposure Factors Handbook (U.S.
EPA, 1997a,b,c), Oregon Department of Environmental Quality’s Guidance for Use of Probabilistic
Analysis in Human Health Risk Assessment (Oregon DEQ, 1998), and the scientific literature.  An
appropriate PDF should be determined in collaboration with the regional risk assessor.  The process by
which PDFs are to be selected and evaluated should be described in the workplan.  EPA’s Superfund
program is in the process of developing a ranking methodology to evaluate data representativeness
relevant to various exposures scenarios.  Following peer review and project completion, the results will be
posted on EPA Superfund web page.

L At this time, EPA does not recommend generic or default probability
distributions for exposure variables.

Regardless of whether a PDF is derived from site-specific measurements or obtained from the
open literature, the risk assessor should carefully evaluate the applicability of the distribution to the target
population at the site.  The distribution selected should be derived from the target population or from a
surrogate population that is representative of the target population at the site.  For example, a distribution
based on homegrown vegetable consumption in an urban population would not be representative for a
farming population in the Midwest.  If such a distribution were to be used, (and no other data were
available), the uncertainty and bias that this PDF would impart to the risk estimate should be
communicated to the risk decision makers.

 For purposes of risk management decision making, the significance of not having site-specific
data should be evaluated in the context of representativeness and sensitivity analysis.  If published data
are representative of the potentially exposed population, then site-specific data may be unnecessary.  For
example, body weights of children and adults have been well studied from national surveys and can
generally be considered reasonable surrogates for use in site risk assessments.  Furthermore, even if a
variable is likely to vary among different exposed populations, it may not contribute greatly to the
variance or uncertainty in risk estimates.  In this case, surrogate data may also be used with confidence in
the risk estimate.  In addition, the PRA may be simplified by using point estimates instead of probability
distributions for the “less sensitive” exposure variables.  In part, the decision to use a point estimate in
lieu of a probability distribution must balance the benefit of simplifying the analysis and the
communication process (see Chapter 6), against the reduction (however small) in the variance of the risk
distribution.  The utility of sensitivity analysis in identifying the important factors in a risk estimate is
discussed further below and in Appendix A.

It is also important to evaluate the sample design and sample size when deciding to apply a
distribution to a specific site.  Depending on the situation, a very large data set derived from a national
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population may be more useful than a site-specific data set derived from a small, incomplete, or poorly
designed study.  Appendix B provides additional discussion on how to evaluate the data and studies that
form the basis for a distribution.  Often, the question arises regarding the appropriateness of combining
data sets to derive a PDF.  Before combining data sets, a careful evaluation should be made of the
representativeness of the study populations, and the similarity in study designs and quality.  In addition,
statistical tests may be used to determine whether or not data sets are compatible with a common
probability distribution (Hedges and Olkin, 1985; Stiteler et al., 1993).  In general, risk assessors should
be reluctant to combine data sets for the purpose of developing a PDF that characterizes variability.  Due
to the number of potential differences inherent in the study design, alternative data sets may provide a
better measure of uncertainty in the probability distribution and parameter estimates, rather than a means
of increasing the overall sample size for defining a single probability distribution.  For example, if
multiple data sets are available, a more informative approach may be to incorporate each data set into the
PRA in a separate analysis, as a form of sensitivity analysis on the choice of alternative data sets.

Each probability distribution used in a Monte Carlo Analysis (MCA) should be presented with
sufficient detail that the analysis can be reproduced (see Chapter 1, Section 1.4, Condition #2).  This
information may be presented in tabular and/or graphical summaries.  Important information for a
summary table would include a description of the distribution type (e.g., lognormal, gamma, etc.), the
parameters that define the distribution (e.g., mean and standard deviation, and possibly upper and lower
truncation limits for a normal distribution), units, and appropriate references (see Table 3-6, for example). 
The table should also indicate whether the distribution describes variability or uncertainty.  The report
should discuss the representativeness of the data and why a particular data set was selected if alternatives
were available.  Graphical summaries of the distributions may include both PDFs and cumulative
distribution functions (CDFs), and should generally be used to document distributions that characterize
site-specific data.

3.1.2 CHARACTERIZING RISK USING PRA

Quantitative risk characterization involves evaluating exposure (or intake) estimates against a
benchmark of toxicity, such as a cancer slope factor or a noncancer hazard quotient.  The general equation
used for quantifying cancer risk from ingestion of contaminated soil is shown in Exhibit 3-3, and the
equation for noncarcinogenic hazard is shown in Exhibit 3-4.  A Hazard Index is equal to the sum of
chemical-specific Hazard Quotients.

At this time, this guidance does not propose probabilistic approaches for dose-response in human
health assessment and, further, discourages undertaking such activities on a site-by-site basis.  Such
activities require contaminant-specific national consensus development and national policy development
(see Chapter 1, Section 1.4.1).  Chapter 4 discusses methods for applying probabilistic approaches to
ecological dose-response assessment.  

The probabilistic calculation of risk involves random sampling from each of the exposure
variable distributions.  The output of this process is a distribution of risk estimates.  When the calculation
of risk (or any other model endpoint) is repeated many times using Monte Carlo techniques to sample the
variables at random, the resulting distribution of risk estimates can be displayed in a similar fashion.  The
type of summary graph used to convey the results of a MCA depends on the risk management needs.  For
example, Chapter 1, Figure 1-3 shows how a PDF for risk might be used to compare the probabilistic
estimate of the RME risk (e.g., 95th percentile) with a risk level of concern.  This type of summary can
also be used to effectively illustrate the relationship between the RME risk determined from point
estimate and probabilistic approaches.   
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Risk Dose CSF= ×
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EXHIBIT 3-3 

EQUATION FOR CANCER RISK

Example for Soil Ingestion

where,
C = concentration in soil (mg/kg) ED = exposure duration (years)
IR = soil ingestion rate (mg/day) BW = body weight (kg)
CF = conversion factor (1E-06 kg/mg) AT = averaging time (days)
EF = exposure frequency (days/year) CSF = oral cancer slope factor (mg/kg-day)-1

Hazard Quotient Dose
RfD

or Concentration
RfC

=

EXHIBIT 3-4

EQUATION FOR NONCANCER HAZARD QUOTIENT

where, 
RfD = reference dose, oral or dermally adjusted (mg/kg-day)
RfC = reference concentration, inhalation (µg/m3)

In addition, the CDF can be especially informative for illustrating the percentile corresponding to
a particular risk level of concern (e.g., cancer risk of 1E-04 or Hazard Index of 1).  Figure 3-2 illustrates
both the PDF and CDF for risk for a hypothetical scenario.  Factors to consider when applying the PDF or
CDF are discussed in Chapter 1, Exhibit 1-3.  When in doubt about the appropriate type of summary to
use, both the PDF and CDF should be provided for all risk distributions.  At a minimum, each summary
output for risk should highlight the risk descriptors of concern (e.g., 50th, 90th, 95th, and 99.9th percentiles). 
It can also be informative to include the results of the point estimate analysis—the risks corresponding to
the central tendency exposure (CTE) and the reasonable maximum exposure (RME).
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Figure 3-2.  Hypothetical PRA results showing a PDF (top panel) and CDF (bottom panel) for
cancer risk with selected summary statistics.  The CDF rises to a maximum cumulative
probability of 1.0.  The CDF clearly shows that the level of regulatory concern chosen for this
example (1E-06) falls between the 90th and 95th percentiles of the risk distribution.
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3.2 ROLE OF THE SENSITIVITY ANALYSIS 

Prior to conducting a PRA, it is worthwhile to review several points pertaining to the sensitivity
analysis.  As shown in Chapter 2 (Figures 2-1 and 2-2), sensitivity analysis can play an important role in
decision making at each tier of the tiered process.  Beginning with Tier 1, a point estimate for risk should
be calculated prior to conducting a PRA.  Based on the results of the point estimate, the risk assessor and
risk decision makers should determine whether a probabilistic analysis will offer additional benefit.  One
factor in this decision may be the results of a sensitivity analysis.  A primary objective of the sensitivity
analysis is to determine which variables and pathways most strongly influence the risk estimate.  At many
Superfund sites, an estimate of cumulative risk considers contamination in multiple media, moving
through multiple pathways and interacting with a number of receptors.  Depending on the complexity of
the site, and the modeling approaches, a risk assessment may involve one exposure pathway and few
variables, or multiple pathways with many variables (e.g., multimedia fate and transport models). 
However, resources and time are often limited.  The sensitivity analysis is invaluable in focusing these
limited resources on the most influential variables and pathways.  

Several methods for conducting sensitivity analysis are described in Appendix A.  It is important
to note that when a sensitivity analysis is performed and the major variables are identified, this does not
mean that the less influential pathways and variables should be eliminated from the risk assessment.  It
means that because they are not major contributors to the variability or uncertainty in risk, they can be
described with point estimates without affecting the risk management decision.  If distributions are
readily available for these less influential variables, one may use distributions.  The key goal is to provide
a comprehensive risk characterization that is scientifically credible and sufficient for risk decision
making.  The time and effort required to achieve various levels of complexity should be weighed against
the value of the information provided to the risk managers.  

Additionally, if a variable is specified as influential in the sensitivity analysis, this does not
automatically mean that a distribution has to be developed for this variable.  If the risk assessor feels that
data are simply not sufficient from which to develop a distribution, then a plausible point estimate can be
used.  The risk assessor should be aware of a possible problem arising from using point estimates in the
absence of data adequate to support a distribution.  If a variable has the potential to significantly impact
the risk outcome, and a very high-end or low-end point estimate is used in the PRA, this has the potential
to right-shift or left-shift the final distribution of risk.  Even though there might not be enough data to
develop a distribution of variability for an influential variable, it would be prudent to communicate the
importance of this data gap to the risk decision makers, and perhaps run multiple simulations with several
plausible input distributions for that variable.  Communication of this uncertainty may persuade the risk
decision makers to collect additional data to better define the variable.
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3.3 EXPOSURE POINT CONCENTRATION TERM

  A brief discussion of the concentration term is provided below.  A more complete discussion of
the concentration term in PRA is provided in Appendix C.  The reader is also referred to Chapter 5 on
development of PRGs.

The major source of uncertainty in Superfund risk assessments is often incomplete knowledge of
the concentration of one or more chemicals in various exposure media.  In any risk assessment, the
derivation of the concentration term will reflect assumptions about: (1) properties of the contaminant,
(2) the spatial and temporal variability in contamination, (3) the behavior of the receptor, and (4) the time
scale of the toxicity of the chemical(s).  

Contaminant concentrations contacted by a receptor are likely to vary depending on the spatial
variability of contamination and the movements of the receptor.  Different individuals may be exposed to
different concentrations based on inter-individual variability in activity patterns.  If information regarding
activity patterns is unavailable, receptors are typically assumed to exhibit random movement such that
there is an equal probability of contacting any area within the exposure unit (EU).  An EU is defined as
the geographical area in which a receptor moves and contacts contaminated medium during the period of
the exposure duration.  In addition, in Superfund risk assessments, the toxicity criteria are often based on
health effects associated with chronic exposure (e.g., lifetime risk of cancer following chronic daily intake
over a period of 30 years).  Hence, the most appropriate expression for the concentration term, for the
majority of risk assessments, is one that characterizes the long-term average exposure point concentration
within the EU.  

L The most appropriate expression of the exposure point concentration term
for chronic exposure will characterize the long-term average concentration
experienced by a receptor within the exposure unit.

In point estimate risk assessments, the exposure point concentration term is usually calculated as
the 95% upper confidence limit (95% UCL) of the arithmetic mean because of the uncertainty associated
with estimating the true (i.e., population) mean concentration at a site.  If the sampling density is sparse
relative to the size of the EU, the uncertainty may be high due to the relatively small number of
measurements available to estimate the mean concentration within the EU.  The decision to use the upper
confidence limit to define the concentration term introduces a measure of protectiveness by reducing the
chance of underestimating the mean.  Although there will be situations in which modeling variability in
concentration will be the appropriate choice (e.g., non-random movement within an EU, acute exposure
events, migration of groundwater contaminant plume, migration of fish, etc.), in most cases,
characterization of the concentration term will focus on uncertainty.  Appendix C provides a more
complete discussion on characterizing both variability and uncertainty in the concentration term. 
Table 3-1 summarizes a number of appropriate methods for characterizing uncertainty in the parameter of
an exposure variable, such as the arithmetic mean of the concentration term. 
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3.4 CHARACTERIZING UNCERTAINTY IN EXPOSURE VARIABLES

Uncertainty is described as a lack of knowledge about factors affecting exposure or risk.  To
evaluate regulatory options, risk assessors are expected to translate the available evidence, however
tentative, into a probability of occurrence of an adverse health effect.  Data from a sample or surrogate
population are used to develop estimates of exposure and risk in a specific target population (see
Section 3.1.4 and Appendix B, Section B.3.1).  This extrapolation requires assumptions and inferences
that have inherent strengths and limitations, and may bias the outcome of the risk estimate.  For example,
a common assumption in risk assessments for carcinogens is that a contaminant concentration within the
boundaries of a hazardous waste site represents the concentration that a receptor is exposed to throughout
the period of exposure, with the corresponding dose averaged over the course of a lifetime.  This
assumption may be conservative (i.e., result in overestimation of exposure) if it is unlikely that receptors
will be exposed at the hazardous waste site for the entire exposure duration.  It is incumbent on the risk
assessor to clearly present the rationale for the assumptions used in a risk assessment, as well as their
implications and limitations.    

U.S. EPA guidance, including the Exposure Assessment Guidelines (U.S. EPA, 1992a), Exposure
Factors Handbook (U.S. EPA, 1997a,b,c), and Guiding Principles for Monte Carlo Analysis (U.S. EPA,
1997d) have classified uncertainty in exposure assessment into three broad categories:

(1) Parameter uncertainty - uncertainty in values used to estimate variables of a model;
(2) Model uncertainty - uncertainty about a model structure (e.g., exposure equation) or intended

use; and
(3) Scenario uncertainty - uncertainty regarding missing or incomplete information to fully

define exposure.

Each source of uncertainty is described in detail below, along with strategies for addressing them in PRA.

3.4.1 PARAMETER UNCERTAINTY

Parameter uncertainty may be the most readily recognized source of uncertainty that is quantified
in site-specific risk assessments at hazardous waste sites.  Parameter uncertainty can occur in each step of
the risk assessment process from data collection and evaluation, to the assessment of exposure and
toxicity.  Sources of parameter uncertainty may include systematic errors or bias in the data collection
process, imprecision in the analytical measurements, and extrapolation from surrogate measures to
represent the parameter of interest.  For example, soil data collected only from the areas of highest
contamination, rather than the entire area that a receptor is expected to come into contact, will result in a
biased estimate of exposure.  

In general, parameter uncertainty can be quantified at any stage of the tiered process, including
point estimate analysis (Tier 1), one-dimensional Monte Carlo analysis (1-D MCA) (Tier 2), and two-
dimensional Monte Carlo analysis (2-D MCA) (Tier 3).  In the point estimate approach, parameter
uncertainty may be addressed in a qualitative manner for most variables.  For example, the uncertainty
section of a point estimate risk assessment document might state that an absorption fraction of 100% was
used to represent the amount of contaminant in soil absorbed from the gastrointestinal (GI) tract, and as a
result, the risk estimate may overestimate actual risk.  In addition, a sensitivity analysis may be
performed, wherein one input variable at a time is changed, while leaving the others constant, to examine
the effect on the outcome.  In the case of absorption from the GI tract, different plausible estimates of the
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high-end, or RME absorption fraction might be used as inputs to the risk equation.  The differences in the
risk estimates would reflect uncertainty in the RME absorption fraction.  

Quantitative approaches for characterizing parameter uncertainty in exposure variables in a
Monte Carlo simulation are summarized in Table 3-1.  If uncertainty in only a few parameter values is of
interest, multiple 1-D MCA simulations can yield the same results as a 2-D MCA simulation, but without
the time and effort of a 2-D MCA.  An example illustrating this concept is given in Table 3-2.  With
multiple 1-D MCA simulations, variability is characterized in one or more variables using probability
distributions for variability (PDFv’s), and uncertainty in a parameter is characterized with a series of
different point estimates from a probability distribution for uncertainty (PDFu) (e.g., 95% lower
confidence limit LCL [95% LCL], sample mean, and 95% UCL).  In a 2-D MCA simulation, variability is
characterized in one or more variables using PDFv’s, and uncertainty in one or more parameters is
characterized with PDFu’s.  With both approaches, the influence of the parameter uncertainty can be
presented as a credible interval or confidence interval (CI) around the risk distribution, depending on how
the PDFu’s are defined.  When only a few sources of parameter uncertainty are quantified, multiple
1-D MCA simulations are preferred over a 2-D MCA because the approach is easier to use and
communicate.  However, if the goal is to explore the effect that many sources of parameter uncertainty
may have on the risk estimates simultaneously, a 2-D MCA is preferred.  Iterative 1-D MCA simulations
with different combinations of confidence limits may be impractical. 

Table 3-1.  Methods for Characterizing Parameter Uncertainty with Monte Carlo Simulations. 
Approach Example of Model Input Method Example of Model Output

Single Point
Estimate

  •  95% UCL 1-D MCA PDFv1 for risk, calculated using the 95%
UCL for one parameter.

Multiple Point
Estimates

  •  95% LCL
  •  sample mean 
  •  95% UCL 

1-D MCA Three PDFv’s for risk, representing the
90% CI for each percentile of the risk
distribution.2  The 90% CI only accounts
for uncertainty in a single parameter (not
multiple parameters).

Parametric
PDFu1

PDFu for the mean based on the
sampling distribution, derived from
a Student’s t-distribution.

2-D MCA One PDFv for risk with confidence
intervals at each percentile of the risk
distribution.  The CI reflects uncertainty in
one or more parameters.

Non-parametric
PDFu

PDFu for the mean based on
bootstrap resampling methods.

2-D MCA Same as parametric probability distribution
for uncertainty.

1Probability distribution for uncertainty (PDFu) and probability distribution for variability (PDFv).
2The 95% UCL for the concentration term represents a 1-sided confidence interval (CI), meaning there is a 95%  probability that
the value is greater than or equal to the mean.  Similarly, the 95% LCL would represent the 1-sided CI in which there is a 95%
probability that the value is less than or equal to the mean.  Both values are percentiles on the probability distribution for
uncertainty (PDFu), also called the sampling distribution for the mean.  Together, the 95% LCL and 95% UCL are equal to the
2-sided 90% confidence interval only for cases in which the PDFu is symmetric.  For example, the sampling distribution for the
arithmetic mean of a sample from a normal distribution with an unknown variance is described with the symmetric Student’s
t-distribution, whereas the PDFu for the mean of a lognormal distribution is asymmetric.  In order to compare the results of
multiple 1-D MCA simulations and a 2-D MCA simulation, the same methodology should be employed to define the PDFu and
the corresponding confidence limits.  

It is generally incorrect to combine a PDFu for one parameter (e.g., mean of the concentration
term) with one or more PDFv’s in other exposure factors when conducting a 1-D MCA for variability. 
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However, distributions for uncertainty and variability may be appropriately combined in a 2-D MCA.  As
discussed in Appendix D, with 2-D MCA, a clear distinction should be made between probability
distributions that characterize variability (PDFv) and parameter uncertainty (PDFu).  A 2-D MCA
propagates the uncertainty and variability distributions separately through an exposure model, thereby
making it possible to evaluate the effect of each on the risk estimates.

Example: Comparison of Multiple Point Estimates of Uncertainty in 1-D MCA, and Distributions of
Uncertainty in 2-D MCA

Table 3-2 illustrates an application of the approaches presented in Table 3-1 for quantifying
variability and parameter uncertainty.  This is a hypothetical example, and no attempt was made to use
standard default assumptions for exposure variables.  Two sources of variability are quantified: (1) inter-
individual variability in exposure frequency (EF), characterized by a triangular distribution, and (2) inter-
individual variability in exposure duration (ED), characterized by a truncated lognormal distribution.  In
addition, two sources of uncertainty are presented: (1) a point estimate for soil and dust ingestion rate,
intended to characterize the RME; and (2) an upper truncation limit of the lognormal distribution for ED,
intended to represent a plausible upper bound for the exposed population.  Methods for quantifying these
sources of uncertainty are discussed below.  Additional sources of uncertainty may also have been
explored.  For example, the choice of a triangular distribution for a PDFv may be provocative for some
risk assessors, since there are few cases in which empirical data suggest a random sample is from a
triangular distribution.  Nevertheless, triangular distributions may be considered rough, or “preliminary”
distributions (see Chapter 2 and Appendix B, Section B.2) for cases when the available information
supports a plausible range and central tendency.  

The choice of distributions is a potential source of uncertainty that can be explored by rerunning
simulations with each alternative, plausible choice, and examining the effect on the RME risk. 
Simulations with preliminary simulations may yield at least three different outcomes.  First, this type of
sensitivity analysis can help guide efforts to improve characterizations of variability for selected variables
that have the greatest affect on the risk estimates.  Second, results may provide justification to exit the
tiered process without continuing with additional Monte Carlo simulations since further effort would be
unlikely to change the risk management decision.  Finally, if the major sources of uncertainty can be
clearly identified, a subset of the less sensitive variables may be defined by point estimates without
significantly reducing the uncertainty in the risk estimates.

Parameter uncertainty can be quantified for both point estimates and PDFv’s.  In this example,
both types of inputs (i.e., point estimates and PDFv’s) are presented as sources of parameter uncertainty:
the RME point estimate for soil and dust ingestion rate (IRsd), and the upper truncation limit on a PDFv
for ED.  For IRsd, assume that three different studies provide equally plausible values for the RME: 50,
100, and 200 mg/day.  A uniform PDFu is specified to characterize this range of plausible values.  For
ED, assume that the maximum value reported from a site-specific survey was 26 years, but surrogate data
for other populations suggest the maximum may be as long as 40 years.  A uniform PDFu is specified to
characterize this range of plausible values as well.

In Cases 1-3, the impact of uncertainty in IRsd and ED was evaluated using a series 1-D MCA
simulations.  Inputs for uncertain parameters associated with IRsd and ED in Case 1, 2, and 3 represent
the minimum, central tendency, and maximum values, respectively.  Each simulation yields a different
risk distribution based on different combinations of point estimates for parameters.  Although a PDFu was
specified for IRsd, it would have been incorrect to combine the PDFu with the PDFv’s for EF and ED in a
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Risk C IR CF EF ED
BW AT

CSForal=
× × × ×

×
×

Table 3-2.   Example of 1-D MCA and 2-D MCA.

Variable
Type of
Input

1-D MCA 2-D MCA

Case 1 Case 2 Case 3 Case 4

C (mg/kg) pt estimate 500 500 500 500

IRsd
(mg/day)

pt estimate 50 100 200 see below

PDFu for 
pt estimate

-- -- -- uniform (50, 200)a

CF (kg/mg) pt estimate 1E-06 1E-06 1E-06 1E-06

EF
(days/year)

PDFv triangular
min   = 200
mode = 250
max   = 350

triangular
min   = 200
mode = 250
max   = 350

triangular
min   = 200
mode = 250
max   = 350

triangular
min   = 200
mode = 250
max   = 350

ED (years) PDFv T-lognormal
mean = 9
stdv  = 10
max = 26

T-lognormal
mean = 9
stdv  = 10
max = 33

T-lognormal
mean = 9
stdv  = 10
max = 40

T-lognormal
mean = 9
stdev = 10
max = PDFu (see below)

PDFu for
parameter of
PDFv

-- -- -- max ~ uniform (26, 40)b

BW (kg) pt estimate 70 70 70 70

AT (days) pt estimate 25550 25550 25550 25550

CSF
(mg/kg-day)-1

pt estimate 1E-01 1E-01 1E-01 1E-01

aUncertainty in the RME point estimate, defined by a uniform distribution with parameters (minimum, maximum).
bUncertainty in the upper truncation limit of the lognormal distribution, defined by a PDFv with parameters (mean, standard
deviation, maximum) and a PDFu for the maximum defined by a uniform distribution with parameters (minimum,
maximum).

1-D MCA because the result would have been a single distribution of risk that co-mingled uncertainty and
variability.

In Case 4, a single 2-D MCA simulation was run using the PDFu’s for uncertainty and the
PDFv’s for variability.  By propagating variability and uncertainty separately, the 2-D MCA yields a
series of distributions of risk, from which credible intervals can be calculated for each percentile of the
CDF.
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Monte Carlo Simulation Results

Figures 3-3 and 3-4 illustrate CDFs for risk produced from Monte Carlo simulations using
Crystal Ball® 2000.  The 1-D MCA simulations (Figure 3-3) were run with 10,000 iterations and Latin
Hypercube sampling.  The 2-D MCA simulation (Figure 3-4) was run with 250 iterations of the outer
loop (uncertainty) and 2,000 iterations of the inner loop (variability).  Details regarding 2-D MCA
simulation are given in Appendix D.

Figure 3-3 shows CDFs for risk based on three simulations of a 1-D MCA simulation.  Each
simulation used a different combination of plausible estimates of the RME value for IRsd and the upper
truncation limit for ED, as discussed above.  The results provide a bounding estimate on the risk
distribution given these two sources of uncertainty.  The 95th percentile risk, highlighted as an example of
the RME risk estimate, may range from approximately 7E-06 to 3.5E-05. 

Figure 3-4 shows a single CDF for risk, representing the central tendency risk distribution.  This
CDF was derived by simulating uncertainty in the risk distribution using 2-D MCA.  For this example, the
2-D MCA yields 250 simulations of the risk distributions for variability, so that there are 250 plausible
estimates of each percentile of the risk distribution.  In practice, more than 250 simulations may be
needed to adequately quantify uncertainty in the risk distribution.  Results of a 2-D MCA can be
presented as probability distributions of uncertainty, or box-and-whisker plots of uncertainty at selected
percentiles of the risk distributions.  Figure 3-4 shows the central tendency (50th percentile) estimate of
uncertainty for the entire CDF of risk.  In addition, a box-and-whisker plot is shown at the 95th percentile
of the CDF.  Selected statistics for the box-and-whisker plot are included in a text box on the graphic (i.e.,
minimum; 5th, 50th, and 95th percentiles, and maximum).  The 90% credible interval is given by the 5th and
95th percentiles.  For this example, the 90% credible interval for the 95th percentile of the risk distribution
is: [9.1E-06, 3.1E-05].  

Figures 3-3 and 3-4 demonstrate that the two approaches (i.e., multiple 1-D MCA and 2-D MCA)
can yield the same results.  However, when there are numerous sources of uncertainty, 2-D MCA offers at
least two advantages over multiple 1-D MCA simulations: (1) 2-D MCA allows the multiple sources of
uncertainty to be included simultaneously so the approach is more efficient than a series of 1-D MCA
simulations; and (2) multiple 1-D MCA simulations yield multiple estimates of the RME risk, but it is not
possible to characterize the uncertainty in the RME risk in quantitative terms; a 2-D MCA yields a PDFu
for RME risk, which allows for statements regarding the level of certainty that the RME risk is above or
below a risk level of concern.

The 95th percentile is a focus of this example because it is a recommended starting point for
determining the risk corresponding to the RME.  Chapter 7 provides guidance to the risk decision makers
on choosing an appropriate percentile (on a distribution of variability) within the RME risk range (90th to
99.9th percentiles).  The chapter also includes a qualitative consideration of the uncertainty or confidence
surrounding a risk estimate in the decision-making process. 
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 3.4.2 SCENARIO AND MODEL UNCERTAINTY

All models are simplified representations of complex biological and physical processes.  As such,
they, and the scenarios to which they are applied, may introduce a significant source of uncertainty into
an exposure and risk estimate.  Models may exclude important variables or important pathways of
exposure, ignore interactions between inputs, use surrogate variables that are different from the target
variables, or they may be designed for specific scenarios and not others.  As a result, a model may not
adequately represent all aspects of the phenomena it was intended to approximate or it may not be
appropriate to predict outcomes for a different type of scenario.  For example, a model intended to
estimate risk from continuous, steady state exposures to a contaminant may not be appropriate or
applicable for estimating risk from acute or subchronic exposure events.  In any risk assessment, it is
important to understand the original intent of a model, the assumptions being made in a model, what the
parameters represent, and how they interact.  Based on this knowledge, one can begin to understand how
representative and applicable (or inapplicable) a model may be to a given scenario.  If multiple models
exist that can be applied to a given scenario, it may be useful to compare and contrast results in order to
understand the potential implications of the differences.  The use of multiple models, or models with
varying levels of sophistication, may provide valuable information on the uncertainty introduced into a
risk estimate as the result of model or scenario uncertainty.  The collection of measured data as a reality
check against a given parameter or the predicted model outcome (such as the collection of vegetable and
fruit contaminant data to compare against modeled uptake into plants) is also useful in attempting to
reduce or at least gain a better understanding of model and scenario uncertainty.

3.5 EXAMPLE OF PRA FOR HUMAN HEALTH

The following hypothetical example provides a conceptual walk-through of the tiered approach
for PRA in Superfund risk assessment.  The example begins with a baseline human health point estimate
risk assessment (Tier 1) and moves to Tier 2, in which multiple iterations of a 1-D MCA are run using
default and site-specific assumptions for input distributions.  The general concepts associated with the
tiered approach are discussed in Chapter 2, and a similar example for ecological risk assessment is given
in Chapter 4.  The 1-D MCA results are based on simulations with Crystal Ball® 2000 using
10,000 iterations and Latin Hypercube sampling.  These settings were sufficient to obtain stability (i.e.,
<1% difference) in the 95% percentile risk estimate.  The example is presented in Exhibit 3-5.  Tables and
figures supporting the example are given immediately following the exhibit.
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Tier 1 Point Estimate      - Baseline Risk Assessment

RI Planning/Scoping/Problem Formulation/Data Collection

SMDP Is the Information Sufficient for Risk Management Decisions?

Identify Data
Gaps/Needs

Communication
With Stakeholders

Sensitivity Analysis
Discussion

Collect
Additional

Data

PRA
Discussion

Work
Planning

Is the Information Sufficient for Risk Management Decisions?

Identify Data
Gaps/Needs

Communication
With Stakeholders

Sensitivity Analysis
Discussion

Collect
Additional

Data

PRA
Discussion

Work
Planning

• Exposure Unit:  (see Figure 3-5) ornithologist (exposed in OSA) and fishery biologist 
(exposed in ISA) 

• Exposure Pathways:  Ingestion of soil/dust; inhalation of fugitive dust, dermal absorption
• Concentration Term:  95% UCL for arithmetic mean (Table 3-3)
• Risk Equations:  Exhibit 3-6
• Exposure Parameters:  Table 3-4
• Results:  Table 3-5

• Site Description:  Former federal facility
• Site Size:  100 acres (5 acres within spill area (ISA); 95 acres outside spill area (OSA))
• Stakeholders:  Refuge employees, environmental activists, etc.
• Land Use:  Future wildlife refuge
• Receptors:  Future wildlife refuge workers (i.e., ornithologists and fishery biologists)
• Sampling Data:  n=35 surface soil samples (see Figure 3-5 for sample locations)
• Chemical of Concern: ChemX
• Chemical Properties:  Nonvolatile
• Toxicological Properties:  Carcinogen: CSForal and CSFdermal= 5.5E-02, CSFinh= 2.73E-02; 

Noncarcinogenic health data are lacking
• Risk Level of Concern:  1E-04 for cancer

Stakeholder meeting is convened—point estimate results are discussed and ideas are exchanged  
as follows:

• Risk estimates are expected to be conservative due to the use of standard default 
exposure parameters, but are the defaults representative?

• Stakeholders are concerned about risk to workers and about the consequences of 
remediation (e.g., negative impacts on habitat and potential job losses).

• Stakeholders are concerned about the relevance of some nonsite-specific exposure 
variables (e.g., exposure duration), but are not sure which variables to investigate 
further (i.e., which is the most influential?).

• Results of the sensitivity analysis from point estimate risk assessment cannot 
identify where the high end risk estimate falls on the risk distribution.

• There is sufficient information (e.g., arithmetic mean, standard deviation, 
percentiles) for some of the exposure variables to develop initial probability 
distributions to characterize variability.

(continued on next page)

EXHIBIT 3-5
USING THE TIERED PROCESS FOR PRA

HYPOTHETICAL CASE STUDY FOR HUMAN HEALTH RISK ASSESSMENT
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Tier 2 Probabilistic Estimate    - Conduct a Preliminary 1-D MCA for Variability

Inside Spill Area (ISA) Outside Spill Area (OSA)

Is the Information Sufficient for Risk Management Decisions? (continued)

Complete 
RI/FS Process

Complete 
RI/FS Process

YesNo

• RME risk estimate:  6.6E-05 (Table 3-5)
• RME percent contribution to risk by 

pathway:  Table 3-5
• RME risk estimate is less than the level 

of concern (1E-04) by a factor of 0.7
• RME risk estimate is sufficient for risk 

management decisions because point 
estimate results are protective

(continued)

• No further changes to the point estimate are possible without more data.
• Information from a PRA may influence the risk management decision by:

- Identifying where on the risk distribution the risk estimate falls.
- Identifying data gaps through a more advanced sensitivity analysis (i.e.,    
which variables would benefit from additional data collection due to their 
influence on the risk estimate?)

Refine Point Estimate Analysis
Only?

No

• Exposure Unit:  Inside Spill Area (Fishery biologist) (see Figure 3-5)
• Exposure Pathways:  Soil ingestion and dermal absorption; inhalation excluded (< 1% of total risk)
• Concentration Term:  95% UCL on arithmetic mean ISA (see Table 3-3)
• Probability Distributions and Parameters:  See Table 3-6
• Results:  See Table 3-7

(continued on next page)

• RME risk estimate:  2.4E-04 (Table 3-5)
• RME percent contribution to risk by 

pathway: Table 3-5 (inhalation adds a 
minimal contribution to total risk, e.g., 
<1%)

• RME risk estimate is greater than the level   
of concern (1E-04) by a factor of 2.4

• RME risk estimate is close to the level of 
concern and therefore information may not 
be sufficient
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No

Yes

Refined PRA 
Analysis Only?
Refined PRA 

Analysis Only?

• RME risk range is sufficiently close to the level of concern to warrant 
further investigation. 

• More rigorous process for fitting distributions to selected variables (e.g., 
IR_soil, SA_skin, etc.) may influence risk management decision, and level 
of effort is reasonable; therefore proceed with a refined 1-D MCA.

Is the Information Sufficient for Risk Management Decisions?

Identify Data
Gaps/Needs

Communication
With Stakeholders

Sensitivity Analysis
Discussion

Collect
Additional

Data

PRA
Discussion

Work
Planning

Is the Information Sufficient for Risk Management Decisions?

Identify Data
Gaps/Needs

Communication
With Stakeholders

Sensitivity Analysis
Discussion

Collect
Additional

Data

PRA
Discussion

Work
Planning

• Preliminary PRA suggests that the Tier 1 RME point estimate risk in ISA (i.e., 2.4E-04) 
corresponds with the 99th percentile of the risk distribution.

• PRA results show that the RME risk range (i.e., 90th to 99.9th percentile) is 1E-04 to 4E-04.
• Information from a preliminary 1-D MCA may not be sufficient for a risk management 

decision as the RME risk range is sufficiently close to the level of concern to warrant further 
investigation. 

Stakeholder meeting is convened—1-D MCA results are discussed and ideas are exchanged:
• Sensitivity analysis from the 1-D MCA demonstrates that exposure duration, soil 

ingestion rate, body weight, and adherence factor are the most sensitive variables (see 
Figure 3-6).

• Additional data collection efforts for exposure duration data specific to fishery 
biologists is feasible.

(continued)

(continued on next page)

SMDP
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Tier 2 Refined PRA     - Conduct Refined 1-D MCA and Refined Point Estimate

Yes

Yes

Is the Information Sufficient for Risk Management Decisions?

Identify Data
Gaps/Needs

Communication
With Stakeholders

Sensitivity Analysis
Discussion

Collect
Additional

Data

PRA
Discussion

Work
Planning

SMDP

Complete RI/FS Process

• Stakeholders and RPM decide that the best remedial 
alternative is to remove surface soil in the 5 acre spill 
area and cover the refuge area with clean fill before 
beginning refuge construction.

Stakeholders meeting is convened. Refined 1-D MCA results are discussed and ideas are 
exchanged as follows:

• Sensitivity analysis from refined 1-D MCA indicates that the use of site-specific data 
did not significantly alter the relative ranking or magnitude of rank correlations for 
input variables (similar graphic as Figure 3-6).

• Refined 1-D MCA results suggest that the refined RME point estimate risk 
corresponds with the 99th percentile of the risk distribution (Table 3-9).

• Refined 1-D MCA results show that the RME range (i.e., 90th to 99.9th percentile) is 
1.6E-04 to 5E-04, with 95th percentile of 2.1E-04.

• Information from refined 1-D MCA is sufficient for risk management decision 
because the RME risk (95th percentile) is above the level of concern of 1E-04  using 
site specific exposure duration data, and additional data collection on IR_soil term is 
not warranted.  Complete RI/FS process.

• Exposure Unit:  Fishery biologist-inside spill area (ISA) (see Figure 3-5)
• Exposure Pathways:  Ingestion of soil and dust, and dermal absorption
• Concentration Term:  95% UCL on arithmetic mean 
• Probability Distributions/Parameters:  see Table 3-8 for sample data and summary statistics; 

exposure duration defined by lognormal PDF (arithmetic mean=14, SD=9.4, upper 
truncation of 44 years)

• Results:  see Table 3-9

(continued)

Tier 2 Refined PRA     - Conduct Refined 1-D MCA and Refined Point Estimate

Yes

Yes

Is the Information Sufficient for Risk Management Decisions?

Identify Data
Gaps/Needs

Communication
With Stakeholders

Sensitivity Analysis
Discussion

Collect
Additional

Data

PRA
Discussion

Work
Planning

SMDP

Complete RI/FS Process

• Stakeholders and RPM decide that the best remedial 
alternative is to remove surface soil in the 5 acre spill 
area and cover the refuge area with clean fill before 
beginning refuge construction.

Complete RI/FS Process

• Stakeholders and RPM decide that the best remedial 
alternative is to remove surface soil in the 5 acre spill 
area and cover the refuge area with clean fill before 
beginning refuge construction.

Stakeholders meeting is convened. Refined 1-D MCA results are discussed and ideas are 
exchanged as follows:

• Sensitivity analysis from refined 1-D MCA indicates that the use of site-specific data 
did not significantly alter the relative ranking or magnitude of rank correlations for 
input variables (similar graphic as Figure 3-6).

• Refined 1-D MCA results suggest that the refined RME point estimate risk 
corresponds with the 99th percentile of the risk distribution (Table 3-9).

• Refined 1-D MCA results show that the RME range (i.e., 90th to 99.9th percentile) is 
1.6E-04 to 5E-04, with 95th percentile of 2.1E-04.

• Information from refined 1-D MCA is sufficient for risk management decision 
because the RME risk (95th percentile) is above the level of concern of 1E-04  using 
site specific exposure duration data, and additional data collection on IR_soil term is 
not warranted.  Complete RI/FS process.

• Exposure Unit:  Fishery biologist-inside spill area (ISA) (see Figure 3-5)
• Exposure Pathways:  Ingestion of soil and dust, and dermal absorption
• Concentration Term:  95% UCL on arithmetic mean 
• Probability Distributions/Parameters:  see Table 3-8 for sample data and summary statistics; 

exposure duration defined by lognormal PDF (arithmetic mean=14, SD=9.4, upper 
truncation of 44 years)

• Results:  see Table 3-9

(continued)
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Figure 3-5.  Site map for future wildlife refuge showing boundaries for the exposure
unit and potential hotspot, as well as sampling locations (n=35).  Sample numbers
correspond with concentration data given in Table 3-3.

Inside Spill Area (n=15)
1088 305 1934 970 Summary Statistics Outside Spill Area Inside Spill Area
646 2787 402 985 Mean 1247 2372

3943 760 4215 743 Standard Deviation 1121 5348
149 149 1121 158 95% UCL1 2303 8444

3704 1088 629 21296
845 837 2293
488 1295 257
387 1239 288

1438 1006 57
2502 283 228

Outside Spill Area (n=20)
Table 3-3. Concentrations in Surface Soil (mg/kg). 

1The 95% UCL was estimated using the Land method (see Appendix C).
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EXHIBIT 3-6

 RISK EQUATIONS

Soil Ingestion
Risk = Cs x CF x IRs x FI x EF X ED x    Oral CSF

BW x AT
Dermal Absorption

Risk = Cs x CF x SA x AF x ABS x EF X ED   x    Dermal-Adjusted CSF
BW x AT

Inhalation of Fugitive Dust
Risk = Cs x 1/PEF x IRa x ET x EF X ED x    Inhalation CSF

BW x AT

Total Risk = Sum of risks from each exposure pathway (soil + dermal + inhalation)

Where:
Cs = Concentration of ChemX in soil (mg/kg)
IRs = Soil ingestion rate for receptor (mg/day)
FI = Fraction ingested from contaminated source (unitless)
CF = Conversion factor (1E-06 kg/mg)
SA = Skin surface area available for exposure (cm2/event)
AF = Soil to skin adherence factor for ChemX (mg/cm2)
ABS = Absorption factor for ChemX (unitless)
IRa = Inhalation rate for receptor (m3/hr)
PEF = Soil-to-air particulate emission factor (kg/m3)
ET = Exposure time for receptor (hours/day)
EF = Exposure frequency for receptor (days/year)
ED = Exposure duration for receptor (years)
BW = Body weight of receptor (kg)
AT = Averaging time (years)
CSF = Cancer slope factor (oral, dermal, inhalation) (mg/kg-day)-1
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Table 3-4.  Exposure Parameters used in Point Estimate Analysis.
Exposure
Variable

CTE 
Value

RME
Value

Units Reference

IRs 50 100 mg/day CTE: U.S. EPA, 1997a, p. 4–25
RME: U.S. EPA, 2001

FI 0.5 1 unitless Site-specific
CF 1E-06 1E-06 kg/mg Constant
SA 3300 3300 cm2/event U.S. EPA, 2001, 50th percentile value for all adult

workers—exposure to face, forearms, and hands
AF 0.1 0.2 mg/cm2 CTE: U.S. EPA, 1998; Table 3.3, value for

gardeners
RME: U.S. EPA, 2001

ABS 0.1 0.1 unitless U.S. EPA, 1998, default for semi-volatile organic
compounds (SVOCs)

IRa 1.3 3.3 m3/hr U.S. EPA, 1997a, p. 5–24, outdoor worker hourly
average: mean and upper percentile

PEF 1.36E+09 1.36E+09 kg/m3 U.S. EPA, 2001
ET 8 8 hours/day Site-specific
EF 200 225 days/year CTE: Site-specific assumption

RME: U.S. EPA, 2001
ED 5 25 years CTE: U.S. EPA, 1993, p. 6

RME: U.S. EPA, 2001
BW 70 70 kg U.S. EPA, 1993, p. 7
AT 25550 25550 days constant

CTE = central tendency exposure; RME = reasonable maximum exposure.   

Table 3-5.  Point Estimate Risks and Exposure Pathway Contributions.
Risk Estimate

by Exposure Pathway
Inside Spill Area (n = 15) Outside Spill Area  (n = 20)

CTE RME CTE RME
Soil Ingestion 6.5E-06 (43 %) 1.5E-04 (60 %) 1.7E-06 (43 %) 4.0E-05 (60 %)

Dermal Absorption 8.6E-06 (57 %) 9.6E-05 (40 %) 2.3E-06 (57 %) 2.6E-05 (40 %)

Inhalation 9.9E-10 (< 1 %) 1.4E-08 (< 1 %) 2.7E-10 (< 1 %) 3.8E-09 (< 1 %)

Total Risk 1.5E-05 2.4E-04 4.1E-06 6.6E-05

Example of % contribution:  % Soil for RME risk inside spill area = (Soil risk / Total risk) x 100% 
= (1.46E-04 / 2.42E-04) x 100% = 60%
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Table 3-6.  Input Distributions for Exposure Variables used in 1-D MCA for Variability.
Exposure
Variable1

Distribution
Type

Parameters2 Units Reference

IR_soil Triangular 0, 50, 100 mg/day U.S. EPA, 1993, 2001
SA_skin3 Lognormal 18150, 37.4 cm2 U.S. EPA, 1997a, Table 6-4

(Total male/female body surface area)
Absorption
Fraction

Uniform 0.1, 0.2 mg/cm2 U.S. EPA, 2001; minimum truncation limit is
professional judgment

IR_air Lognormal 1.68, 0.72 m3/hour U.S. EPA, 1996, p.5–10
EF Triangular 200, 225, 250 days U.S. EPA, 2001; truncation limits are

professional judgment 
ED Lognormal4 11.7, 7.0 years U.S. EPA, 1997b, Table 15-161 and U.S. EPA,

2001
(Mean value is based on average of total median
tenure for professional specialty and farming,
forestry, and fishing)

Truncated
Lognormal5

14.0, 9.4, 44.0 years Site-specific survey data, used in refined
1-D MCA

BW Lognormal 71.75, 14.2 kg U.S. EPA, 1997a, Tables 7-4 and 7-5;
(Combined male/female body weight
distributions)

1All other exposure parameters are inputted as point estimates (see Table 3-4).
2Parameters for lognormal PDF are X ~ Lognormal (arithmetic mean, arithmetic standard deviation) unless otherwise stated. 
Parameters for triangular PDF are X ~ Triangular (minimum, mode, maximum).  Parameters for uniform PDF are X ~
Uniform (minimum, maximum).
3A point estimate of 0.189 was used to adjust the surface area skin (SA_skin) distribution, which is based on total body surface
area, to account for skin exposures limited to face, forearms, and hands (U.S. EPA, 1997a, Vol. I).
4Parameters for preliminary lognormal PDF for ED were converted from a geometric mean of 10 and a 95th percentile of 25.
5Parameters for site-specific lognormal PDF for ED are arithmetic mean, standard deviation, and upper truncation limit.

Table 3-7.  1-D MCA Risk Estimates using Preliminary Inputs.

Cumulative
Percentile

Spill Area Risk

50th 5.7E-05

90th 1.3E-04

95th 1.6E-04

99th 2.4E-04

99.9th 3.9E-04
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Figure 3-6.  Results of sensitivity analysis for preliminary 1-D MCA (Tier 2)
showing the Spearman Rank correlations (see Appendix A and B) between input
variables and risk estimates.

Table 3-8.  Exposure Duration Survey Results.
Survey Results (years) Summary Statistics

24.9 20.3 17.2 n  20
8.4 11.7 6.5 min 3.0
3.0 4.7 16.5 max 44.2
6.8 20.9 6.0 arithmetic mean 14.0

18.5 10.6 18.8 standard dev 9.4
9.1 12.7 11.7 median/GM 11.7
7.2 44.2 GSD 1.8

Table 3-9.  Refined Point Estimate and 1-D MCA Risk Estimates.

Cumulative Percentile Spill Area Risk
Refined RME 
Point Estimate

3.1E-04

50th 6.7E-05

90th 1.6E-04

95th 2.1E-04

99th 3.2E-04

99.9th 5.3E-04
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Figure 4-1.  Ecological Risk Assessment Framework (U.S. EPA, 1992a)

CHAPTER 4

PROBABILISTIC ANALYSIS IN ECOLOGICAL RISK ASSESSMENT

4.1 INTRODUCTION

4.1.1 BASIC APPROACH FOR PERFORMING ECOLOGICAL RISK ASSESSMENTS

Ecological risk assessment (ERA) is defined by the 1997 Environmental Protection Agency’s
(EPA) Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting
Ecological Risk Assessments (ERAGS) (U.S. EPA, 1997a) as an evaluation of the “likelihood that adverse
ecological effects are occurring or may occur as a result of exposure to one or more stressors”.  The
ERAGS document is generally similar to, and consistent with the earlier framework guidance and
approach (U.S. EPA, 1992a) which was expanded upon and superceded by the Guidelines for Ecological
Risk Assessment (U.S. EPA, 1998).  The EPA has developed extensive technical and policy guidance on
how ERAs should be planned and performed (see Exhibit 4-2).  In general, this process has three main
elements, as shown in Figure 4-1:
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Problem Formulation provides a foundation for the entire risk assessment.  This element
includes the specification of risk management goals and assessment endpoints, the development
of a site conceptual model with exposure pathways and receptors, and the development of a
sampling and analysis plan to collect data on exposures and measures of effects that are needed to
support the ERA.  In general, problem formulation serves as the foundation of an ERA and often
is an iterative process, whereby substantial re-evaluation may occur as new information and data
are collected during the site investigations.  Collection of data in subsequent iterations is often
triggered by identification of major data gaps and uncertainties in the risk characterization that
prevent confident decision making by risk managers.  

Analysis includes two principal measurement steps that are based upon the problem formulation: 
Assessment of exposures and assessment of ecological effects.  Assessment of exposures includes
the identification of stressors at the site that may affect ecological receptors, a characterization of
the spatial and/or temporal pattern of the stressors in the environment at the site, and an analysis
of the level of contact or co-occurrence between the stressors and the ecological receptors. 
Assessment of ecological effects includes identification of the types of effects which different
stressors may have on ecological receptors, along with a characterization of the relationship
between the level of exposure to the stressor and the expected biological or ecological response. 
This is referred to as the stressor-response relationship.

Risk Characterization combines the exposure characterization and the effects characterization in
order to provide a quantitative likelihood or qualitative description of the nature, frequency, and
severity of ecological risks attributable to exposure to stressors at a site, as well as an evaluation
of the ecological relevance of the effects.  Good risk characterizations express results clearly,
articulate major assumptions and uncertainties, identify reasonable alternative interpretations, and
separate scientific conclusions from policy judgments (U.S. EPA, 1995, 1998).



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 4 ~ December 31, 2001

Page 4-3

EXHIBIT 4-1  

DEFINITIONS FOR CHAPTER 4

Assessment Endpoint - An explicit expression of an environmental value (ecological resource) that is to be
protected, operationally defined by risk managers and risk assessors as valuable attributes of an ecological
entity.

Benchmark Dose (BMD) - The dose which causes a specified level of response.  The lower confidence limit on
the BMD is usually referred to as the BMDL.

Community - An assemblage of populations of different species specified by locales in space and time.
Conceptual Model - A site conceptual model (SCM) in the problem formulation for an ecological risk

assessment is a written description and visual representation of predicted relationships between ecological
entities and the stressors to which they may be exposed, including sources and pathways of stressors.

Ecological Risk Assessment (ERA) - The process that evaluates the likelihood that adverse ecological effects
may occur or are occurring as a result of exposure to one or more stressors.

Lines of Evidence - Information derived from different sources or techniques that can be used to characterize
the level of risk posed to exposed receptors; weight-of-evidence generally refers to the quantity of
science, while strength of evidence generally refers to the quality of science.

Lowest-Observed-Adverse-Effect Level (LOAEL) - The lowest level of a stressor evaluated in a test that
caused a statistically significant effect on one or more measurement endpoints linked to undesirable
(adverse) biological changes.

Measurement Endpoint (Measure of Effect) - A measurable ecological property that is related to the valued
characteristic chosen as the assessment endpoint.  Measurement endpoints (also called measures of effect)
often are expressed as the statistical or numeric summaries of the observations that make up the
measurement.

No-Observed-Adverse-Effect Level (NOAEL) - The highest level of a stressor administered in a test that did
not cause a statistically significant effect in any measurement endpoint linked to an undesirable (adverse)
biological change.

Population - An aggregate of individuals of a species within a specified location in space and time.
Receptor - The ecological entity (with various levels of organization) exposed to the stressor.
Risk Characterization (ecological) - The third and last phase of ERA that integrates the analyses of exposure to

stressors with associated ecological effects to evaluate likelihoods of adverse ecological effects.  The
ecological relevance of the adverse effects is discussed, including consideration of the types, severity, and
magnitudes of the effects, their spatial and temporal patterns, and the likelihood of recovery.

Scientific/Management Decision Point (SMDP) - A time during the ERA when a risk assessor communicates
results or plans of the assessment at that stage to a risk manager.  The risk manager decides if information
is sufficient to proceed with risk management strategies or whether more information is needed to
characterize risk.

Species - A group of organisms that actually or potentially interbreed and are reproductively isolated from
similar groups; also, a taxonomic grouping of morphologically similar individuals.

Stressor - Any chemical, physical or biological entity that can induce an adverse response in an ecological
receptor; Superfund considers all stressors, but focuses on chemical (toxicant) stressors.

Toxicity Reference Value (TRV) - A dose or concentration used to approximate the exposure threshold for a
specified effect in a specified receptor.  A TRV is often based on a NOAEL or LOAEL from a laboratory-
based test in a relevant receptor species.
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EXHIBIT 4-2

ECOLOGICAL RISK ASSESSMENT GUIDANCE AND POLICY DIRECTIVES

EPA has developed extensive guidance and policies on methods and approaches for performing ERAs,
including the following:

(1) Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting
Ecological Risk Assessments (“ERAGS”), Interim Final (U.S. EPA, 1997a).  This document
includes processes and steps specifically selected for use in ERAs at Superfund sites.  This
document supersedes the 1989 EPA RAGS, Volume II, Environmental Evaluation Manual,
Interim Final (U.S. EPA, 1989).  Supplements to ERAGS include the EcoUpdates (U.S.
EPA, 1991-present, Intermittent Bulletin Series, 1991 to present), which provide brief
recommendations on common issues for Superfund ERAs.

(2) Guidelines for Ecological Risk Assessment ("Guidelines") (U.S. EPA, 1998).  This document
updates general (nonprogram specific) guidance that expands upon and replaces the earlier
Framework for Ecological Risk Assessment (U.S. EPA, 1992a).  The approaches and
methods outlined in the Guidelines and in ERAGS are generally consistent with each other.

(3) Risk Assessment Guidance for Superfund (RAGS): Volume 1–Human Health Evaluation
Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk
Assessments), (U.S. EPA, 2001).  This guidance specifies formats that are required to present
data and results in baseline risk assessments (both human and ecological) at Superfund sites.

(4) Policy Memorandum: Guidance on Risk Characterization for Risk Managers and Risk
Assessors, F. Henry Habicht, Deputy Administrator, Feb. 26, 1992 (U.S. EPA, 1992b).  This
policy requires baseline risk assessments to present ranges of risks based on “central
tendency” and “reasonable maximum” (RME) or “high-end” exposures with corresponding
risk estimates.

(5) Policy Memorandum: Role of the Ecological Risk Assessment in the Baseline Risk
Assessment, Elliott Laws, Assistant Administrator, August 12, 1994  (U.S. EPA, 1994).  This
policy requires the same high level of effort and quality for ERAs as commonly performed
for human health risk assessments at Superfund sites.

(6) Policy Memorandum: EPA Risk Characterization Program, Carol Browner, Administrator,
March 21, 1995 (U.S. EPA, 1995).  This policy clarifies the presentation of hazards and
uncertainty in human and ERAs, calling for clarity, transparency, reasonableness, and
consistency.

(7) Issuance of Final Guidance: Ecological Risk Assessment and Risk Management Principles
for Superfund Sites.  Stephen D. Luftig for Larry D. Reed, October 7, 1999 (U.S. EPA,
1999).  This document presents six key principles in ecological risk management and
decision making at Superfund sites.
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SMDP= Scientific/Management Decision Point

Figure 4-2.  Eight-step Ecological Risk Assessment Process for Superfund (U.S. EPA, 1997a).

ERA is a key component of the remedial investigation process that EPA uses at Superfund sites. 
ERAGS is a program-specific guidance for Superfund that focuses on chemical stressors released into the
environment from hazardous waste sites.  This guidance refers to ERA as a “qualitative and/or
quantitative appraisal of the actual or potential impacts of contaminants from a hazardous waste site on
plants and animals other than humans and domesticated species.  An excess risk does not exist unless:
(1) the stressor has the ability to cause one or more adverse effects, and (2) the stressor co-occurs with or
contacts an ecological component long enough and at a sufficient intensity to elicit the identified adverse
effect.”  The ERAGS document provides guidance on using an eight-step process for completing an ERA
for the Superfund Program, as shown in Figure 4-2.
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4.1.2 PREDICTIVE VS OBSERVATIONAL APPROACHES

In general, conclusions about ecological hazards from environmental contamination may be based
on information derived from two different techniques:  the predictive approach (a comparison of
calculated exposures with a set of toxicity reference values), and the observational approach (direct
evaluation of the range of potential exposures, coupled with site-specific toxicity testing and population
demographic estimates).

Predictive Approach: The core of all Superfund ERAs is the predictive approach, including
exposure assessment, toxicity assessment, and risk characterization.  The predictive approach is
based on a comparison of calculated estimates of chemical exposure of a receptor to one or more
Toxicity Reference Values (TRVs) appropriate for that chemical and that receptor.  The ratio of
exposure at the site to the TRV is referred to as the Hazard Quotient (HQ).  The predictive
approach has always been used at Superfund sites because it is relatively easy to implement, and
because it can be used to evaluate not only current risks, but also risks that might exist in the
future if any important changes were to occur in the level of contamination (e.g., due to on-going
fate and transport processes), or to changes in land use (a change in land use might alter a number
of habitat factors that influence the number and identify of ecological receptors).  The predictive
approach, however, has the inherent uncertainties of the assumptions in the exposure and toxicity
models which are seldom site-specific and thus can lead to either over-protective or under-
protective estimates of risk. 

Direct Observation: If there is a need to reduce uncertainties in the predictive approach, direct
observations of exposure and effects can be collected at Superfund hazardous waste sites.  The
predictive approach used in ERA does not negate the use of descriptive toxicological approaches
or the use of site-specific exposure data, such as toxicity testing or bioaccumulation
measurements.  Site-specific observations, such as toxicity testing of invertebrates over a gradient
of site contaminant exposure levels, may be used to develop site-specific and chemical-specific
toxicological relationships.  Site-specific measures of exposure or ecosystem characteristics can
be used to reduce uncertainty in the exposure assessment and aid in the development of cleanup
goals in the Baseline ERA.  The direct observation of the exposure and effects on ecological
receptors does not however constitute a complete risk assessment.  If field or laboratory studies
are NOT designed appropriately to elicit stressor-response relationships, direct impacts should not
be used as the sole measure of risk because of the difficulty in interpreting and using these results
to develop cleanup goals in the ERA.  Furthermore, poorly designed toxicological evaluations of
environmental media from the site may not allow a definitive identification of the cause of
adverse response.  For example, receptor abundance and diversity as demographic data reflect
many factors (habitat suitability, availability of food, predator-prey relationships among others). 
If these factors are not properly controlled in the experimental design of the study collecting the
observational data, conclusions regarding chemical stressors can be confounded.  In addition,
direct observation provides information about current risks only and not potential risks should
land use or exposure change in the future.  Hence, direct observations may be used as a line of
evidence in an ERA, but should not be the sole evidence used to characterize the presence or
absence of the risks of an adverse effect in the future.
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4.1.3 POTENTIAL ADVANTAGES AND LIMITATIONS OF PROBABILISTIC METHODS IN ERA

Probabilistic risk assessment (PRA) is a computational tool that may help increase the strength of
the predictive evaluation of ecological risks, as well as sometimes helping to better evaluate distributions
of observational data for an ERA.  The potential advantages of PRA compared to, or possible benefits in
augmentation of, the conventional point estimate approach for characterizing variability in exposure or
risk are discussed in Chapter 1 and Exhibits 1-6 and 1-7.  In brief, point estimate calculations utilize
simplifications and assumptions in order to deal with the complex mathematics of combining inputs that
are inherently variable.  Probabilistic models, in contrast, are designed to combine sets of information on
inputs that are expressed as probability distributions.  Therefore, PRA generally can yield risk estimates
that allow for a more complete characterization of variability and uncertainty, and a potentially more
useful sensitivity analysis as compared to estimating sensitivities of inputs from point estimates (see
Appendix A).  For example, sensitivity analysis can help determine major contributors to exposure factors
and sources of uncertainty that could help to design better sampling and analysis plans in later iterations
to help fill data gaps and reduce uncertainties for risk characterization. 
  

Because of the inherent differences in the computational approach, as in the case with any
additional risk assessment information, PRA may sometimes lead to a different risk assessment outcome
and risk management decision than would be derived from the use of point estimate calculations alone.  
The differences in the decisions stemming from the two approaches will vary from case to case,
depending mainly on the form of the exposure or risk model, the attributes of the distributions of the input
values, and the quality, quantity, and representativeness of the data on which the input distributions are
derived.  Sometimes the differences between the two approaches will be quite large, and the information
gained from a PRA can play an important role as weight-of-evidence in communicating risks to
stakeholders and risk managers.

Even though PRA may have some advantages, it also has limitations and potential for misuse.
PRA can not fill basic data gaps and can not eliminate all of the potential concerns associated with those
data gaps.  That is, if one or more of the input distributions are not well characterized and the
distribution(s) must be estimated or assumed, then the results of the PRA approach will share the same
uncertainty as the point estimate values.  However, given equal states of knowledge, the PRA approach
may yield a more complete characterization of the exposure or risk distribution than the point estimate
approach.

Of course, any prediction of exposure or risk is based on the use of mathematical models to
represent very complex environmental, biological, and ecological systems.  No matter how sophisticated
the computations, questions will always exist as to whether the calculated values are a good
approximation of the truth.  Therefore, even when PRA is used as a supplemental tool to point estimations
(deterministic) of risks in the ERA process, a weight-of-evidence approach that combines the predictive
approach with direct observations will still provide the most appropriate basis for decision making.

A second application of PRA in ERA, besides the characterization and incorporation of
distributions of data for ERA, is the characterization of uncertainty in calculated estimates of exposure or
risk.  In this application, whatever uncertainty may exist in one or more of the input distributions is
characterized, and quantitative estimates of the confidence limits around the mean, upper bound, or any
other percentile of the output distribution are calculated.  This use of PRA is often especially important in
risk management decision making, since the range of uncertainty around central tendency exposure (CTE)
and reasonable maximum exposure (RME) or other upper bound estimates of exposure or risk can
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sometimes be quite large.  As stated before, the point estimate approach can also provide estimates of
uncertainty, but the PRA approach often provides a more complete characterization of the uncertainty.

4.1.4 FOCUS OF THIS CHAPTER

This chapter focuses on the application of PRA as a tool for predicting ecological risks at
Superfund sites.  Some of the methods and approaches described in this chapter are similar to those that
have been developed by U.S. EPA's Office of Pesticide Programs Committee on Federal Insecticide,
Fungicide and Rodenticide Act (FIFRA) Risk Assessment Methods (ECOFRAM, 1999a, 1999b) for
use in assessing environmental hazards of pesticide products.  However, the methods described in this
chapter are specifically designed to be applicable at Superfund sites and to be consistent with other
Superfund guidance.

This chapter does not seek to provide guidance on the many basic issues that must be faced in
planning and performing any ERA.  Prior to considering the use of PRA in an ERA, fundamental
concepts will already have been developed, such as a problem formulation with a conceptual site model,
selection of representative receptors, definition of exposed populations, definition of risk management
objectives and goals, selection of assessment endpoints, calculation of TRVs and development of site
sampling plans, etc.  Likewise, this chapter does not repeat the presentation of basic statistical and
mathematical methods used in PRA, since these are described in other chapters and appendices of this
document.  In summary:

L This chapter focuses on application of PRA techniques to ERA at Superfund
sites.

L The reader is assumed to be familiar with the basic methods used in ERA at
Superfund sites, and this chapter does not address basic tactical and
technical issues in ERA.

L The reader is assumed to be familiar with the basic mathematical principles and
techniques of PRA as described in other chapters and appendices of this document.

4.2 DECIDING IF AND WHEN TO USE PRA IN ECOLOGICAL RISK ASSESSMENT

As shown in Figure 4-2, the ERA process for Superfund includes a number of scientific/
management decision points (SMDPs) (U.S. EPA, 1997a).  The SMDP is a point of consultation between
the risk manager, EPA Regional Biological Technical Assistance Group (BTAG) coordinator, EPA
regional ecotoxicologist, and other stakeholders, and is intended to provide an opportunity for re-
evaluation of direction and goals of the assessment at critical points in the process.  It is during the SMDP
discussions that it is important to decide whether or not a PRA is likely to be useful in decision making. 
If so, the pursuit of distributed data is justified.  Within the 8-step process of developing the ERA, PRA
could provide insight at several steps.  A decision to move forward with distributional analyses should be
considered within the BTAG context during the documentation of the outcome of the SMDPs after Step 3
within the process.  As a reminder, PRA is NOT intended to be a replacement for point estimate analyses;
rather PRA supplements the required presentation of point estimates of risk.  It is also emphasized that the
use of PRA should never be viewed as or used in an attempt to simply generate an alternative risk
estimate or PRG, compared to that which was derived by a point estimate ERA; instead, PRA should be
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used to provide insightful information on distributions of various factors (exposure, toxicity, and hazards)
which can provide weight-of-evidence evaluations of potential risks in conjunction with a point estimate
ERA.   There are a number of factors to consider in making these decisions, as discussed below.

4.2.1 TECHNICAL CONSIDERATIONS

The fundamental reason for performing any predictive risk assessment (point estimate or
probabilistic) is to provide information to risk managers in order to help support the risk management
decision-making process.  As noted above, a properly performed PRA may help to yield more description
of variability in exposure and risk than can be achieved using the point estimate approach.  Therefore, if
any of a site’s data may be better described and evaluated by distributions, then a PRA can be applied to
any part of an ERA or even to the entire ERA for expressing risk characterization in probabilistic terms;
again, always in conjunction with the required point estimate ERA.  However, when risk estimates
derived from the point estimate approach are either far below or far above a level of risk management
concern, any such potential improvements in risk characterization are not likely to influence risk
management decision making.  In these cases, PRA is not likely to be as useful in decision making.  Even
so, PRA may help in these situations by providing information that may be useful in better deciding
where the gradient of excess risks are reduced to acceptable levels.  Rather, it is more common for a PRA
to be useful when point estimates of risks are close to the decision threshold (such that PRA-based
refinements in the risk estimates might be important in making risk management decisions).  It is for this
reason that PRA may be useful to apply either during the development of the ERA after the screen
(Steps 3 to 6, U.S. EPA, 1997a), or after point estimate results from the baseline ERA have been
completed (Steps 1 to 7, U.S. EPA, 1997a).

The results of a point estimate risk assessment will normally present the range of risks based on
central tendency exposure and reasonable maximum exposure input assumptions and on the no-observed-
adverse-effect-level (NOAEL)- and lowest-observed-adverse-effect-level (LOAEL)-based TRVs (U.S.
EPA, 1992b, 1997b).  The bounds for the highest HQ are derived from the ratio of the RME compared to
the NOAEL-based TRV, and the bounds for the lowest HQ are based on the ratio of the CTE compared to
the LOAEL-based TRV.  These two bounded extreme estimates of risk can be used to screen out cases
where PRA is not likely to be as useful.  That is, if the risk to the RME receptor is clearly below a level of
concern using the NOAEL-based TRV, then risks to the exposed population are likely to be low and PRA
analysis is likely not needed.  Likewise, if risks to the CTE receptor are clearly above a level of concern
using the LOAEL-based TRV, then risks to the exposed population are likely to be of definite concern,
and a PRA may not provide as much additional useful information to the risk manager, except in the case
where uncertainties remain high and the derivation of an appropriate and realistic clean-up goal may be
difficult.  If the risks are intermediate between these two bounds (e.g., risks to the CTE receptor are below
a level of concern based on the LOAEL-based TRV but are above a level of concern based on the
NOAEL-based TRV), then PRA might be helpful in further characterizing the site risks in balance with
the point estimates of risks and in supporting decision making or in deciding if additional iterations of
analyses would be needed.  This concept is illustrated graphically in Figure 4-3.
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Figure 4-3.  Example of cases where use of PRA may be helpful.  In cases A and E, the range of risks (CTE to
RME) estimated by the point estimate method are either well below (Case A) or well above (Case E) the likely
level of concern based on the NOAEL-LOAEL range, and PRA is not likely to alter risk management decisions
regarding the potential need for remediation.  In cases B, C, and D, the point estimates of risk overlap or fall within
the range of potential concern, suggesting that PRA-based risk estimates might be helpful in supporting risk
management decisions.

The second main technical reason to consider conducting PRA is that the PRA methodology can
help characterize and quantify the degree of variability and uncertainty around any particular estimate of
exposure or risk (e.g., the CTE or RME).  The purpose of the analysis would be to estimate the
uncertainty around an exposure or toxicity or risk estimate, generally with little or no additional data
acquisition.  The only additional information needed to perform the analysis is an estimate of the
uncertainty in the true parameter values of the key variables in the variability model.  In some cases, these
estimates of uncertainty around parameter values may be developed from statistical analysis of the
available data.  Alternatively, professional judgment may be used to establish credible bounds on the
parameters, especially when relevant data are sparse.

L Even in the presence of data gaps, uncertainty analysis using PRA can provide useful
information.  Indeed, it is when data are limiting or absent that a quantitative
probabilistic analysis of uncertainty may be most helpful.
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4.2.2 COST AND SCHEDULE CONSIDERATIONS

Performing a PRA can sometimes add time and cost to an ERA.  As discussed in Chapter 2,
in part, the decision to progress from a point estimate assessment to a PRA reflects a belief that the
potential value of the PRA for risk management decision making outweighs the additional time and costs. 
The tiered process encourages a systematic approach for both the point estimate and probabilistic
assessments, whereby the least complex methods are applied first.  For example, the initial Tier 2
assessment may be conducted with a set of preliminary probability distributions for variability (PDFv),
developed with much the same information and assumptions that were applied to develop point estimates
in Tier 1.  Parameter values can be estimated by setting the arithmetic mean equal to the CTE point
estimate, and the 95th percentile equal to the RME point estimate. The choice of distributions may differ
depending on the state of knowledge for a particular variable (see Appendix B).  For example, unbounded
variables might be characterized with lognormal distributions while bounded distributions are
characterized by beta or Johnson Sb distributions.  Certain variables may continue to be characterized by
point estimates, especially if the sensitivity analysis suggests that the chemical, pathway, and/or exposure
variables are relatively minor contributors to total exposure and risk.  The decision to collect additional
data or explore alternative methods for developing probability distributions can be reexamined in an
iterative fashion by evaluating the expected benefits of the added information to the risk management
decision-making process.  These concepts are presented in greater detail in Chapter 2 (see Figures 2-1 and
2-2).

4.3 PROBLEM FORMULATION

Once a decision has been made to include PRA in an ERA, the first step should be to re-visit the
problem formulation step and carefully determine the scope and objectives of the PRA.  Typically, a
considerable amount of knowledge will have been gained during the screening level and baseline point
estimate evaluations, and this knowledge should be used to help focus and narrow the scope of the PRA. 
That is, the PRA will generally utilize the same basic exposure and risk models used in the point estimate
approach, but the PRA will typically evaluate only a sub-set of the scenarios considered.  For example,
chemicals, pathways, and/or receptors that are found to contribute a negligible level of exposure or risk
may usually be omitted from the PRA, while those factors that contribute significantly to an excess level
of risk concern in the point estimate approach should generally be retained.  As noted previously, when a
chemical or pathway is omitted from a PRA analysis, this does not mean that it is eliminated from the
overall risk assessment; rather, it may be kept in the assessment as a point estimate.  

The next step in problem formulation for a PRA should be to define whether the goal of the
analysis is to characterize variability alone, or to characterize both variability and uncertainty.  In either
case, sensitivity analysis (as summarized in the preceding paragraph, or for more details see Appendix A)
should be used to help identify which of the input variables contribute the most to the variability in the
outputs (exposure, toxic effects, or risk), and the initial PRA should focus on defining the probability
density functions (PDFs) for those input variables.  An analysis of uncertainty, if thought to provide
additional useful information, may also be included at the initial level, or may be delayed until the initial
analysis of variability is completed.

As always, problem formulation should be viewed as an iterative process, and it is reasonable and
appropriate that decisions regarding the scope and direction of the PRA should be reassessed (at SMDPs)
as information becomes available from the initial evaluations.  As stressed above, the fundamental
criterion which should be used is whether or not further PRA evaluations are likely to provide additional
information to a point estimate ERA that will help strengthen and support the risk management decision-
making process.
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4.4 MODELING VARIABILITY IN EXPOSURE

There are two main types of descriptors of exposure that may be used in ERA: dose and
concentration.  For terrestrial receptors such as mammals or birds, exposure is most often described in
terms of ingested dose (mg/kg-day).  In most cases, this will be based on chemical ingested from drinking
water and/or the diet, including incidental soil ingestion, but could also include amounts of chemical
taken up across the skin or through inhalation as additional routes of exposure.  The exposure levels are
most often expressed as doses, since that term tends to normalize the confounding factors of variable
daily intake rates and body weights that occur if/when one only evaluates concentrations.  For aquatic
receptors, the main route of exposure is usually by direct contact and less often by ingestion, so exposure
is usually characterized in terms of concentration of contaminants in surface water, pore water and/or
sediment.  Likewise, exposure of terrestrial plants and terrestrial invertebrates, such as earthworms, is
usually described in terms of concentration of contaminants in soil.  In some cases, exposure of terrestrial
receptors is characterized in terms of specific tissue or whole-body concentrations of contaminants. 
Examples of calculating and presenting dose-based and concentration-based distributions of exposure are
presented below.

4.4.1 CHARACTERIZING VARIABILITY IN DOSE

The general equation used for calculating the dose of a contaminant of concern in a specified
environmental medium (e.g., water, soil, air, diet, etc.) by a particular member of a population of exposed
receptors is:

DIi,j = Ci x IRi,j / BWj
where:

DIi,j = Average daily intake of chemical due to ingestion of medium "I" by a population
member "j" of the exposed population (mg/kg-day)

Ci = Concentration of chemical in environmental medium "I" (mg/unit medium)
IRi,j = Intake rate of medium "I" at the site by population member "j" (units of medium

per day)
BWj = Body weight of population member "j" (kg)

Total exposure of a population member "j" is then the sum of the exposures across the different media:

DItotal,j = 3 DIi,j

In this basic equation, IRi,j and BWj are random variables (i.e., they have different measurable values for
different members of the exposed population) that are often correlated.  For example, a receptor with a
relatively low intake rate can also be expected to have a low body weight.  Some studies utilize paired
measurements of IR and BW by individual, and present a distribution of the ratio (IRi,j /BWj), referred to
as a body weight-normalized intake rate (mg/kg-day).  This expression provides an alternative to using a
correlation coefficient to relate two input variables (see Appendix B), and can be entered into the dose
equation as follows:

DI C
IR
BWi j i

i j

j
,

,= ×










where the ratio is characterized by a single probability distribution.  Because the variability in this ratio is
likely to be different than the variability in the ratio of the IR and BW variables treated independently,
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accounting for the correlation can affect the distribution of dose and risk.  If empirical data for
quantifying the ratio are limited but a relationship is expected, plausible ranges of correlations may be
explored as a source of uncertainty in the risk estimates.

The concentration term (Ci) may be characterized by a point estimate or a probability distribution,
depending on the relationship between the geographic scales of the measurement data and receptor home
range (see Appendix C, Section C.3.1).  If the home range of the receptor is small compared to the spatial
distribution of sampling locations, Ci may be characterized by the probability distribution for variability
in measured concentrations.  Alternatively, if the home range is large compared with the exposure area
evaluated, then a point estimate (e.g., mean or uncertainty in the mean) may be more appropriate. 
 

In the PRA approach, PDFs should be defined for as many of the input variables as reasonable,
especially for those variables that are judged (via sensitivity analysis) to contribute the most to the
variability in total exposure.  The basic principles for selecting the key variables to model as PDFs are
presented in Appendix A, and the basic methods used for selecting and fitting distributions are described
in detail in Appendix B. 

Figure 4-4 shows several examples of graphical formats which may be used to present the
estimated distribution of ingested doses in an exposed population.  If a single distribution is plotted (top
panel), the PDF format is usually the most familiar and useful for risk assessors and managers, but the
cumulative distribution function (CDF) format tends to be less cluttered when multiple distributions are
shown (e.g., compare the middle graph to the bottom graph).  In addition, percentiles can be read directly
from a CDF format, but not from a PDF format graph.  In all cases, it is very useful to superimpose the
CTE and RME point estimate ranges of exposure directly on the same graph as is used to show the
distribution of exposures estimated by PRA.  This provides a convenient way to compare the results of
the two alternative computational methods, and interpret additional information that the PRA can add to
the point estimate ERA.  

L A conventional point estimate, range of exposure (CTE to RME) or toxicity
(NOAEL to LOAEL) and corresponding risk ranges should  be calculated
and presented for comparison with the PRA results.
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Figure 4-4.  Example Graphical Presentations of Dose Distributions.
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4.4.2 CHARACTERIZING VARIABILITY IN EXPOSURE CONCENTRATION

As noted above, in some cases the most appropriate descriptor of exposure is concentration
(either in an abiotic medium such as water, soil, or sediment, or in the tissues of the receptor), rather than
ingested dose.  Assuming that the concentration values in the medium of concern are measured rather than
modeled, PRA is not required to generate the distribution of concentrations.  Rather, the available data
may be used to define an appropriate theoretical or empirical distribution function (EDF), as described in
Appendix B.  If concentrations in the medium are modeled (calculated by PRA) rather than measured,
then the exposure distribution may be estimated by using distribution functions (PDFs or CDFs, rather
than using point estimates as inputs to the fate and transport model(s) and/or uptake models that predict
the concentration levels in the medium of concern.  The resulting distribution(s) of concentration may be
displayed graphically using the same formats as illustrated in Figure 4-4, except that the x-axis has units
of concentration rather than dose.  As above, the point estimate ranges of concentration used in the CTE
and RME calculations should be plotted on the same graphs to provide a convenient basis for comparing
the results of the two approaches and to help interpret the additional information that the PRA can add to
the point estimate outputs.

4.5 MODELING VARIABILITY IN TOXICITY

4.5.1 VARIABILITY IN RESPONSE AMONG MEMBERS OF A POPULATION

Data on the toxicity of a chemical usually comes from laboratory studies whereby groups of
organisms (laboratory mammals, fish, benthic organisms, plants, earthworms, etc.) are exposed to
differing levels of chemical, and one or more responses (endpoints) are measured (survival, growth,
reproduction, etc.).  These toxicological observations define the exposure-based stressor-response curve
that is characteristic for that specific receptor, chemical, and response.

In the point estimate approach, information from the dose/stressor-response curve is generally
converted to one or more TRVs, each representing a specific point on the dose-based or concentration-
based stressor-response curve.  For example, the highest dose or concentration that did not cause a
statistically significant change in a toxicologically significant endpoint is defined as either the NOAEL
dose or the no-observed-effect concentration (NOEC), while the lowest dose or concentration that did
cause a statistically significant effect on a relevant endpoint is the LOAEL dose or the lowest-observed-
effect concentration (LOEC).  Generally, exposures below NOAEL- or NOEC-based TRVs are
interpreted to pose acceptable risk, while exposures above LOAEL- or LOEC-based exposures are judged
to pose potentially unacceptable risk.  It is essential to note the need for high quality toxicity data to
derive reliable and confident TRVs.  Strong sampling and study designs, that generate data for site
exposure factors and toxicological stressor-response relationships, are of critical importance for producing
high quality ERAs by either point estimate or PRA approaches.  Shortcomings in either area could be
major data gaps or uncertainties that detract from the confidence in the risk characterization of the ERA,
and may be a basis for pursuing additional iterations of sampling or studies that are more strongly
designed to fill those critical data gaps and reduce uncertainty.

Use of the TRV approach, however, does have some potential limitations.  Most important is that
the ability of a study to detect an adverse effect depends on both the range of doses tested and the
statistical power of the study (i.e., the ability to detect an effect if it occurs).  Thus, studies with low
power (e.g., those with only a few test animals per dose group) tend to yield NOAEL or NOEC values
that are higher than studies with good power (those with many animals per dose group).  In addition, the
choice of the TRV is restricted to doses or concentrations that were tested, which may or may not be close
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to the true threshold for adverse effects, and this uncertainty increases as the interval between doses
increases.  Finally, it is not always easy to interpret the significance of an exposure that exceeds some
particular TRV, since the severity and incidence of response depends on the shape and slope of the
exposure response curve (information that is not captured in a point estimate TRV).

 One way to resolve some of these stressor-response limitations is to apply uncertainty factors to
the NOAEL or NOEC and LOAEL or LOEC, which calculates an adjusted TRV that reduces the study’s
exposure level of concern to account for those uncertainties, so that there is a lesser chance of overlooking
possible adverse exposures (i.e., avoiding a false negative conclusion).  Another way to resolve some of
the stressor-response limitations is to fit a mathematical equation to the available exposure-response data
and describe the entire exposure-response curve.  This may be done using any convenient data fitting
software, but EPA has developed a software package specifically designed for this type of effort.  This
software is referred to as the Benchmark Dose Software (BMDS), and is available along with detailed
documentation and explanation of the methodology at www.epa.gov/ncea/bmds.htm.

The most appropriate mathematical form of the exposure-response model depends on whether the
endpoint measured is discrete and dichotomous (e.g., survival) or continuous (e.g., growth rate).  For a
dichotomous endpoint, the result of the fitting exercise is a mathematical exposure-response model P that
yields the probability of a response in an individual exposed at any specified level of exposure (expressed
either as dose or concentration).  Exhibit 4-3 shows an example of this process using hypothetical data. 
Thus, for an individual with an exposure level of "x", the probability of a response in that individual is
simply P(x).  In a population of individuals with exposures x1, x2, x3, ...xi, the expected number of
responses (e.g., deaths) in the exposed population is the sum of the probabilities across all individuals in
the population.  Stated another way, the average fraction of the population that will experience the
response is given by the expected value of P (i.e., the average value of P(x)).



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 4 ~ December 31, 2001

Page 4-17

Concentration Number
ug/L Tested Dead Alive

0 20 0 20
10 19 1 18
20 20 0 20
30 20 3 17
40 18 7 11
60 20 15 5

Basic Equation
Probability of mortality (conc) = 1 / (1 + exp(-a - b*conc))

Best fit parameters
a -4.80
b 0.101

Goodness of Fit
P 0.604 P=Chi Square Goodness of Fit test statistic

AIC 79.12 AIC=Akaike's Information Criterion

These data were fit to each of the dichotomous models available in BMDS.  The best-fit model was 
the logistic equation.  A graph of the best fit curve is shown below.

Survival

The following data are from a hypothetical study of the acute lethality (24 hour) of a chemical using 
fathead minnows as the test organism:
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EXHIBIT 4-3

MODELING VARIABILITY IN RESPONSE FOR A DICHOTOMOUS ENDPOINT
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For a continuous endpoint, the BMDS software yields equations that give the expected mean
response m(x) at a specified exposure level, along with the standard deviation s(x) that characterizes how
variable the response is among different individuals exposed at that same exposure level.  The standard
deviation may be modeled either as a constant (homogeneous variance) or a function of the exposure level
(heterogeneous variance), with the choice depending on which approach yields the best agreement with
the observed variances.  In most cases there will not be sufficient data to allow a meaningful analysis of
the true shape of the underlying distribution of responses at a given exposure, so the choice of the
distributional form of the variability in response will require an assumption.  In the absence of any clear
evidence to the contrary, it is considered likely that the distribution of responses will not be strongly
skewed, and that the distribution may be reasonably well modeled using a normal PDF (truncated as
necessary to prohibit selection of biologically impossible or implausible values).  Thus, variability in
response at dose "x" may generally be modeled as:

Response(x) ~ NORMAL[m(x), s(x), min, max]

However, if available data suggest some other distributional form is more appropriate, that form should
be used and justified.

Exhibit 4-4 shows an example of this process using hypothetical data.  In this case, the mean
response was found to be well modeled by the Hill equation, and the standard deviation was found to be
best characterized as a constant (rho=0).  Thus, given an exposure level "x", the mean response m(x) may
be calculated from the model, and this value along with the standard deviation may then be used as
parameters for an appropriate type of PDF (e.g., normal) to describe the expected distribution of
responses in a population of different individuals exposed at level "x".  Section 4.7.2 describes methods
that may be used to characterize and quantify the uncertainty associated with this approach.
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Ingested dose Number
mg/kg-day Tested Mean Stdev

0 5 24 8
50 5 22 9

100 5 25 6
150 5 18 7
200 5 7 10
250 5 -8 5

Basic Equations
Mean Response(d) = int + v*d^n / (k^n + d^n)
Variance(d) = alpha*mean response(d)^rho

Best fit parameters
int 23.70
v -51.41
n 5.295
k 228.7

alpha 48.5
rho 0 (constant variance)

Goodness of Fit
P 0.685 P=Chi Square Goodness of Fit test statistic

AIC 154.5 AIC=Akaike's Information Criterion

Weight Gain (% Starting Value)

The following data are from a hypothetical study of the effects of a chemical on the growth of 
laboratory mice.  Animals were exposed to the chemical via drinking water for 21 days.  The 
measurement endpoint was weight gain, expressed as a percentage of the starting weight of 
each animal. 

These data were fit to each of the continuous models available in BMDS.  The best-fit model was 
the Hill equation with constant variance.  A graph of the best fit curve is shown below.
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EXHIBIT 4-4

MODELING VARIABILITY IN RESPONSE FOR A CONTINUOUS ENDPOINT
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4.5.2 VARIABILITY IN RESPONSE AMONG SPECIES

In some cases, risk management decisions may also consider community-level effects as well as
population-level or sub-populations effects.  That is, a stressor might be considered to be below a level of
concern for the sustainability of a community if only a small fraction of the total number of exposed
species are affected.  In this case, toxicological responses may be best characterized by the distribution of
toxicity values across species.  This is referred to as a Species Sensitivity Distribution (SSD).  This type
of approach is generally used for communities of aquatic receptors, since all of the different species that
make up the community (e.g., all fish, benthic invertebrates, aquatic plants, and amphibians that reside in
a stream) will be exposed to approximately the same concentration of contaminant in the water.  The
process for generating an SSD consists of the following steps:

(1) Select an appropriate type of endpoint (lethality, growth, reproduction, etc.), and select an
appropriate type of point estimate from the exposure-response curve for each species.  For
example, the TRV might be the LC50 for lethality or the EC20 for growth.  The key
requirement is that the SSD be composed of TRV endpoints that are all of the same type, not
a mixture.

(2) Collect all reliable values for that type of TRV from the literature for as many relevant
species as possible.  When more than one value is available for a particular species, either
select the value that is judged to be of highest quality and/or highest relevance, or combine
the values across studies to derive a single composite TRV for each species.  It is important to
have only one value per species to maintain equal weighting across species.

(3) Characterize the distribution of TRVs across species with an appropriate CDF.  Note that
there is no a priori reason to expect that an SSD will be well characterized by a parametric
distribution, so both parametric and empirical distributions should be considered.

Once an SSD has been developed, the fraction of species in the exposed community that may be
affected at some specified concentration may be determined either from the empirical distribution or from
the fitted distribution.  Exhibit 4-5 shows examples of this approach.  In this hypothetical case, the TRV
selected for use was the LClow (in this case, the LClow is defined as all LC values <=LC10).  A total of
13 such values were located.  The first graphical presentation is the empirical distribution function, where
the Rank Order Statistic (ROS) of each value is plotted as a function of the log of the corresponding
value.  This may be used directly to estimate the fraction of the species in a community that will be
affected by any particular environmental concentration.  For example, in this case, it may be seen that a
concentration of 10 ug/L would be expected to exceed the LClow for about 33% of the aquatic species for
which toxicity data are available.  The second graph shows how the data may be characterized by fitting
to a continuous distribution.  In this case, a lognormal distribution was selected as a matter of
convenience, but other distributions may also yield acceptable fits.  Based on the best fit lognormal
distribution for the SSD data, it is calculated that a concentration of 10 ug/L would be expected to impact
about 31% of the exposed species.  However, as noted above, there is no special reason to expect that an
SSD will be well characterized by a continuous parametric distribution, so some caution should be used in
the use of a continuous distribution to fit an SSD, especially when the SSD is based on a limited number
of species and when the purpose of the SSD is to estimate percentiles and exposures outside the observed
range.  The risk assessor should always present an evaluation of the robustness of an SSD to aid in the
decision process.
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Hypothetical Data
Species LClow ln(LClow) Rank ROS z-score

a 2 0.693 1 0.07 -1.465
b 2.5 0.916 2 0.14 -1.068
c 3 1.099 3 0.21 -0.792
d 5 1.609 4 0.29 -0.566
e 15 2.708 5 0.36 -0.366
f 26 3.258 6 0.43 -0.180
g 41 3.714 7 0.50 0.000
h 55 4.007 8 0.57 0.180
i 67 4.205 9 0.64 0.366
j 81 4.394 10 0.71 0.566
k 125 4.828 11 0.79 0.792
l 220 5.394 12 0.86 1.068

m 600 6.397 13 0.93 1.465

Example EDF:  ROS vs LClow (log-scale)

Example Parametric Fit:  (Lognormal)
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HYPOTHETICAL SPECIES SENSITIVITY DISTRIBUTION
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Figure 4-5.  Example Comparison of Exposure Distribution to TRV.

4.6 MODELING VARIABILITY IN RISK

4.6.1 VARIABILITY IN HAZARD QUOTIENT

As noted above, the most common descriptor of risk used in predictive risk assessments is the
Hazard Quotient (HQ).  The HQ is the ratio of the exposure for some generalized or typical hypothetical
member of the receptor population at a site, compared to an appropriate TRV value that equates to an
acceptable level of risk for that receptor and chemical.  Usually the HQ approach is not based on a single
value, but on a range of values in which different levels of exposure (CTE and RME) are compared to
both the NOAEL to LOAEL benchmarks.  In general, HQ values below 1 are interpreted as indicating
acceptable risk, while HQ values above 1 are interpreted as indicating the potential for adverse effects.  

Because exposure varies among different members of an exposed population of receptors, HQ
values also vary among members of the exposed population.  Several alternative approaches for
characterizing this variability by PRA methods are presented below. 

Variability Within a Population

Figure 4-5 illustrates
the simplest approach for
summarizing variability in HQ
values among the members of 
an exposed population.  In this
format, the TRV values
appropriate for a particular
exposure are simply
superimposed on the graph
illustrating the distribution of
exposures.  This may be done
either for a dose-based (as
shown in the figure) or for a
concentration-based exposure
parameter.  This format allows
an easy evaluation of the
fraction of the population above
(HQ > 1) and below (HQ < 1)
each TRV, especially when
presented in CDF format. 
However, this format does not
allow for a quantitative estimate
of the fraction of the population
with HQ values above any value
other than 1, although a similar
calculation and presentation
could be made for any multiple
of the TRVs, which would
directly equate to that multiple
of the HQ (e.g., depicting the
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Figure 4-6.  Example Distribution of HQ Values.

results for a value equal to 10-times the TRV would show the fraction of the population with an HQ
greater than 10).

More directly, the distribution of HQ values may be calculated by dividing each exposure value
by one or all of the TRVs based on the NOAEL, LOAEL, BMDL, etc., as shown in Figure 4-6.  Note that
dividing a distribution by a constant does not change the shape of the distribution (only its scale), so the
shape of the HQ distribution will appear identical to that of the exposure distribution.  Figure 4-6
illustrates two HQ distributions; one calculated using the NOAEL-based TRV, the other using the
LOAEL-based TRV.  In a case such as this where there are two or more HQ distributions, a CDF format
is generally easier to evaluate than a PDF format, since overlap between the curves is minimized.  The
CDF format allows an easy quantitative evaluation of the fraction of the population above and below any
particular HQ level.  For example, in the case shown in Figure 4-6, it may be seen that 83% of the
population is expected to have HQ values below 1 based on the NOAEL-based TRV, while 4% are
expected to have HQ values above 1 based on the LOAEL-based TRV.  This type of description
(percentage of the population with HQ values within a specified range) is very helpful in predicting
proportions of a population exposed to specified doses of concern.
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Variability Between Species

A similar approach may be used for characterizing the variability in risks among different species
in a community.  Figure 4-7 is an example that compares the distribution of concentration values in a
water body (the variability might represent either time or space) to an appropriate SSD of TRVs for
different species of aquatic receptors that might reside in that water body.  Three different graphical
formats are illustrated.  In the upper panel, the PDF of concentration is compared to the CDF of the SSD. 
This format is easy to understand and may be interpreted visually, but is difficult to interpret
quantitatively.  The middle panel shows that same information, but with both distributions presented in
CDF format.  This allows for a quantitative evaluation of the fraction of the species that will be above
their respective TRVs at any specified part of the exposure distribution.  For example, using a simple
graphical interpolation process (shown by the dashed lines), it may be seen that the 90th percentile of
concentration (21 ug/L) will impact approximately 24% of the exposed species.  The bottom panel shows
the results when this same process is repeated (mathematically) for each of the concentration percentiles. 
As seen, hazards to the community of receptor species is quite low until concentration values reach the
80th to 85th percentile, but then rise rapidly.  For example, a concentration value equal to the
95th percentile (about 28 ug/L, which will occur approximately 5% of the time) is expected to impact
approximately 68% of the exposed species, and the 99th percentile (which will occur about 1% of the
time) is expected to impact nearly all of the exposed species. 
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Figure 4-7.  Example Presentation of Species Sensitivity Distribution.
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4.6.2 VARIABILITY IN RESPONSE

As noted above, HQ and Hazard Index (HI) (where appropriate) values are a convenient way to
characterize risk to ecological receptors, but interpreting the biological significance of the ranges of HQ
values greater than 1 is not always easy.  One of the main advantages to the PRA approach is that
distributions of exposure may be combined with exposure-response distributions in order to generate
distributions that characterize the frequency and magnitude (severity) of responses in an exposed
population.  Two examples of this approach are presented below.

Example 1:  Dichotomous Response

In this hypothetical example, a toxic chemical is being transported by surface water run-off from
a Superfund site into a nearby stream.  Because of short-term and seasonal variability in rainfall levels
(which influences both run-off rate and stream flow), the concentration of the chemical in the stream has
been observed to vary as a function of time.  The risk manager at the site wants to know two things:
(1) How often will the concentration enter a range that can cause acute lethality in fish?; and (2) When
that happens, what percent of the fish population is likely to die?  Exhibit 4-6 summarizes the
hypothetical concentration data and illustrates the basic approach.  In this case, the concentration data are
most conveniently modeled as an empirical PDF.  Next, assume that the acute concentration-lethality
curve is available for the chemical of interest in a relevant indicator species of fish.  For convenience,
assume the response function is the same as that shown in Exhibit 4-3.  Then, the PDF for acute mortality
may be generated by repeated sampling from the concentration distribution and calculating the probability
of response (acute mortality) for each concentration value selected.  Because this is a case where the
entire population of fish at the exposure location may be assumed to be exposed to the same concentration
in water, the probability of mortality in a single fish is equivalent to the average fraction of the population
that is expected to die as a result of the exposure.  The resulting PDF is shown in the graph in Exhibit 4-6. 
As seen, lethality is expected to be low or absent about 95% of the time, but about 5% of the time the
concentration may enter a range where acute lethality may occur.  The extent of mortality within the
exposed population is expected to range from about 20% at the 97th percentile of exposure (i.e., this is
expected to occur about 3% of the time), up to about 70% at the 99th percentile of exposure (i.e., this is
expected to occur about 1% of the time).
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Scenario

Hypothetical Concentration Data in Water

Value Percentile
0.5 (1/2 DL) 0.00
1.1 0.10
2.5 0.25
5.1 0.50
9.2 0.75

15.8 0.90
24.7 0.95
52.6 0.99
83.1 (max) 1.00

Response Endpoint = acute mortality
Stressor-response model fit (see Exhibit 4-2)

P(c) =  1/(1+exp(4.8 - 0.1*c)

PRA Simulation
Step 1 Draw a concentration at random from the empiric distribution
Step 2 Calculate the probability of mortality at that dose 

Track this as the forecast cell

Example Output
Percentile % Lethality

0.050 0.9%
0.250 1.0%
0.500 1.4%
0.750 2.0%
0.900 3.9%
0.950 9.1%
0.990 63%
0.999 96%

Exposure of a population of fish to concentration values in a stream that vary over time
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MODELING VARIABILITY IN A DICHOTOMOUS RESPONSE
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Example 2:  Continuous Response

Exhibit 4-7 provides a hypothetical example of modeling variability in response for a continuous
endpoint.  In this example, assume that a toxic chemical has been released by a Superfund site and has
been transported in low levels by air to a nearby meadow.  Among the receptors of potential concern in
the meadow are a number of different types of small mammal, and the field mouse has been selected to
serve as an indicator species for this group.  The goal of the PRA is to characterize the effects of the
chemical on the growth of field mice in the meadow.  Exposure occurs mainly by ingestion of seeds that
have been contaminated by uptake of the chemical from soil, and it has been determined that the
variability in average daily intake (DI) of chemical from the diet can be modeled as a lognormal
distribution with mean of 104 mg/kg-day, and a standard deviation of 127 mg/kg-day.  Assume for
convenience that the exposure-response curve for growth inhibition in mice by the chemical is the same
as that presented previously in Exhibit 4-4.  Given these inputs, the expected distribution of responses is
derived as follows:

Step 1: Draw a random value for the DI of a random member of the population
Step 2: Calculate the mean response m(d) and the standard deviation of the response s(d) for a

group of individuals exposed at that dose (d)
Step 3: Define the distribution of responses at that dose as NORMAL[m(d), s(d)]
Step 4: Draw a response from that distribution, and track this as the output variable

An example of the output for this example is shown in the two graphs at the bottom of
Exhibit 4-7.  As seen, mice that are not exposed to the chemical display a range of growth rates ranging
from about +10% to +40%.  Many of the mice (about 90%) residing in the contaminated field are
experiencing a range of growth rates that are only slightly decreased from rates expected for unexposed
animals.  However, about 10% of the animals have weight gains that are markedly less than for
unexposed animals, ranging from about +5% to -30% (i.e., a net weight loss of 30% compared to the
starting weight).

It should be noted that the response distribution calculated in this way is what would be expected
for a large population of exposed receptors.  If the actual exposed population is small, then the actual
response distribution may vary somewhat compared to the typical response shown in Exhibit 4-7.  In
cases where it is important to evaluate this variability about the expected average pattern of response, this
may be done by running repeated Monte Carlo simulations using a number of trials (iterations) within
each simulation that is equal to the expected size of the exposed population.  Each simulation will thus
represent a possible response distribution in the exposed population, and the range of responses across
different populations may be evaluated by comparing the multiple simulations.  As noted above, the
magnitude of the variability between populations is expected to be small if the population size (number of
trials) is large, although this depends on the characteristics of the exposure and response functions.
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Scenario

Example Inputs
Exposure

Distribution of Average DI LN(104,127)

Response (see Exhibit 4-3)
Endpoint = Growth (% increase in 21 days)
Stressor-response model fit

Mean response(dose) = 23.7 - 51.4*dose^n / (228.7^5.29 + dose^5.29)
Stdev (dose) = 7.0 (constant) 

PRA Simulation
Step 1 Draw a dose at random from the lognormal distribution of dose
Step 2 Calculate the mean response [m(d)] and standard deviation of the response (s(d) at that dose 
Step 3 Define the PDF for response at dose d:  NORMAL(m(d), s(d))
Step 4 Draw a response at random from this PDF

Track this as the forecast cell

Example Output
Percentile Control Exposed

0.05 10.9 -18.6
0.25 18.6 14.7
0.50 24.0 21.4
0.75 29.3 26.9
0.90 34.1 31.5
0.95 37.0 34.2
0.99 42.6 39.1

Exposure of a population of field mice to a chemical ingested via the food chain
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  MODELING VARIABILITY IN A CONTINUOUS RESPONSE
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Figure 4-8.  Example Joint Probability Curve.

4.6.3 JOINT PROBABILITY CURVES

In this approach, if data are available to characterize the probability of a particular exposure
occurring, and an exposure-response curve is available, these may be combined to yield a curve (referred
to as a Joint Probability Curve) that shows the probability that a response greater than some specified
magnitude will occur.  An example is shown in Figure 4-8.  The upper panel shows a hypothetical
cumulative exposure probability distribution (plotted on the primary y-axis) along with the
exposure-response curve (plotted on the secondary y-axis).  The steps needed to generate the Joint
Probability Curve are as follows:

Step 1:  Select an exposure level "x" and record the probability (Px) of exceeding that exposure. 
For example, in Figure 4-8, at an exposure of 12 units, the cumulative probability of exposure is
84%.  Thus, the probability of exceeding that exposure is 16%. 

Step 2:  Find the expected response at that same exposure (Rx).  In this case, the response at an
exposure of 12 is 2.2.

Step 3:  Plot a data point at Rx on the
x-axis and Px on the y-axis.

Step 4:  Repeat this process for many
different exposure levels, being sure
to draw samples that adequately cover
all parts of the probability scale.

The lower panel of Figure 4-8 shows the
results obtained using the hypothetical data in
the upper panel.  The advantage of this format
is that it gives a clear visual display of both
the probability and magnitude (severity,
extent) of response.  Further, the area to the
left of the curve is a relative index of the
population-level or community-level risk, and
comparison of this area across different
scenarios is helpful in comparing different
risk scenarios (both in risk characterization
and risk management).  However, this
approach is based on the mean response at a
dose, and does not account for variability in
response between multiple individuals all
exposed at that dose.  Employing a
two-dimensional Monte Carlo analysis
(2-D MCA) procedure could help to display
this variability in response between the
individuals at a given dose.
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Variability
Percentile 5th Mean 95th

0.05 0.4 1.1 2.0
0.10 0.7 1.6 2.8
0.15 0.9 2.1 3.5
0.20 1.2 2.6 4.2
0.25 1.5 3.1 5.0
0.30 1.8 3.7 5.9
0.35 2.1 4.3 6.7
0.40 2.6 5.0 7.6
0.45 3.0 5.8 8.7
0.50 3.6 6.6 9.9
0.55 4.2 7.7 11.3
0.60 5.0 8.8 12.9
0.65 5.9 10.3 14.8
0.70 7.2 12.1 17.2
0.75 8.8 14.4 20.3
0.80 10.9 17.5 24.1
0.85 14.5 22.0 30.1
0.90 20.1 29.6 39.4
0.95 32.9 46.5 60.0
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Figure 4-9.  Example Presentation of Uncertainty in Exposure.

Note that unless 2-D MCA is used, this approach does not require Monte Carlo modeling. 
Rather, the calculations can usually be performed in a spreadsheet format using built-in spreadsheet
functions.

4.7 MODELING UNCERTAINTY IN ECOLOGICAL RISK ASSESSMENTS

As emphasized above, one of the greatest potential benefits of the PRA approach is the ability to
combine estimates of uncertainty associated with different components of the exposure and risk models in
order to describe the overall uncertainty in final exposure or risk estimates.  Some basic options for
characterizing and presenting uncertainty in exposure, toxicity, HQ, and response are presented below.

4.7.1 UNCERTAINTY IN EXPOSURE

Most estimates of dose-based exposure for terrestrial receptors (birds, mammals) are based on
calculated estimates of chemical intake using simple or complex food web models, sometimes coupled
with environmental fate and transport models that can link risk to a receptor with a source of
contamination.  In cases where
receptors are exposed mainly by
direct contact rather than
ingestion (e.g., fish, soil
invertebrates, etc.), concentration-
based (as opposed to dose-based)
descriptors of exposures may be
derived using mathematical fate
and transport models.  The basic
principles for modeling
uncertainty in ecological exposure
models (either dose-based or
concentration-based) are the same
as discussed in Appendix D.  In
brief, probability distribution
functions of uncertainty (PDFu's)
are used to characterize the
uncertainty in the parameters of
the probability distribution
functions of variability (PDFv's)
for some or all variables in the
exposure model.  Then, a
2-D MCA  is used to derive
quantitative estimates of the
uncertainty around each percentile
of the variability distribution of
exposure.  Figure 4-9 illustrates
the type of tabular and graphic
outputs that this approach
generates.

If exposure is based on
measured rather than calculated values by PRA (e.g., measured concentrations in an abiotic medium,
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measured concentrations in receptor tissues), uncertainty in the empirical or best-fit continuous
distribution through the data can be quantified using the statistical methods detailed in Appendix B.

As discussed in Chapter 1, it is important to understand that there are many sources of uncertainty
and that this approach to uncertainty analysis focuses mainly on parameter uncertainty and uncertainty in
the true shape of input variable distributions.  It does not capture other sources of uncertainty relating to
the fundamental adequacy of the exposure and risk models used to describe the behavior of complex
biological systems or of sampling and analytical errors and uncertainties, so the uncertainty estimates
should always be interpreted in this light as being somewhat incomplete.

4.7.2 UNCERTAINTY IN TOXICITY

Toxicity information used for ERAs is often a source of uncertainty in the risk assessment
process.  This uncertainty may arise from multiple areas and may include both quantitative uncertainty in
the dose-response data (involving toxicokinetics and study designs) and qualitative uncertainty in the
relevance of the data (involving toxicodynamics).  Methods for characterizing the quantitative uncertainty
in both point estimates of toxicity (TRVs) and in full exposure-response curves are outlined below.

Uncertainty in TRVs

TRVs for a chemical are point estimates of exposure levels that do not cause an unacceptable
effect in an exposed receptor population.  Ideally, all TRVs would be based on NOAEL and LOAEL
values derived from studies in which the receptor, endpoint, exposure route and duration were all matched
to the assessment endpoints defined for the site.  However, such exact matches are seldom available. 
Therefore, it is often necessary to extrapolate available toxicity data across route, duration, endpoint
and/or species, leading to uncertainty in the most appropriate value to use as the NOAEL or LOAEL. 
There are no default methods for developing TRVs on a site.  However, some options include the use of
allometric dose scaling models, physiologically-based biokinetic models, benchmark dose estimates or
other approaches based mainly on policy and/or professional judgment.  Guidelines for dealing with the
uncertainty in components of the TRV derivation by uses of PRA are provided below.

Uncertainty in NOAELs and LOAELs

Uncertainty in the NOAEL or LOAEL for a chemical has two components: (1) uncertainty within
a study; and (2) uncertainty between studies, under exact specified conditions of exposure.

Assuming that a single study has been selected to provide the NOAEL and/or LOAEL values to
be used in deriving a TRV for a chemical, it is customary to define the NOAEL as the highest exposure
that did not cause a statistically significant effect, and the LOAEL is the lowest exposure that did cause a
statistically significant effect.  As noted earlier (see Section 4.5.1), this approach has a number of
limitations, and there may be substantial uncertainty as to whether the observed NOAEL and LOAEL
values actually bracket the true threshold effect level.  One way to quantify uncertainty in the exposure
levels that cause some specified level of adverse effect is through the use of exposure-response curve-
fitting software such as EPA's BMDS package.  In this approach, the risk assessor selects some level of
effect that is judged to be below a level of concern, and another level of effect that would be of concern. 
The choice of these response levels is a matter of judgment, and depends on the nature and severity of the
endpoint being evaluated.  A specified level of effect is referred to as a Benchmark Response (BMR), and
the exposure that causes that response is referred to as the Benchmark Dose (BMD).  Given information
on the number of test organisms in each test group and on the variability of the response in those
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organisms, the BMD software uses maximum likelihood methods to derive the 5% lower confidence
bound on the exposure that causes the BMR.  This is referred to as the BMDL.  This uncertainty bound
may be used to quantify the uncertainty in the BMD, and hence to characterize this source of uncertainty
in the TRV.  The simplest method for approximating the uncertainty distribution around the BMD is to
assume the distribution is approximately normal, with mean equal to the BMD and standard deviation
(standard error) given by:

Stdev=(BMD - BMDL) / 1.645 

For advanced analyses, a more accurate characterization of the uncertainty distribution around the BMD
may be derived by Monte Carlo simulation.  In this approach, each model parameter is assumed to be
normally distributed, with mean and standard error values provided by the BMDS output.  Monte Carlo
simulation is then used to select alternative model parameter sets, being sure to account for the covariance
between parameters (the covariance matrix is also provided by the BMDS output).  For each parameter
data set, the BMD is calculated, and the distribution of BMD values across many iterations is a better
approximation of the uncertainty in the BMD.

Uncertainty in the effect level (NOAEL or LOAEL) for a chemical may also arise because there
is more than one study available for the chemical, and the studies do not yield equal estimates of the
effect level.  It is important to note that the process of reviewing available toxicity studies, choosing the
most relevant endpoint for use in deriving a TRV, and identifying the most relevant study is a process
requiring basic toxicological expertise (not probability or statistics), and this process must be completed
both for point estimate and probabilistic risk assessments.  In general, studies based on different receptors,
endpoints, exposure routes and/or durations are not equally relevant for evaluating a particular assessment
endpoint in a particular indicator species.  However, in some cases, multiple studies of the same endpoint
in the same species will be available.  In such a case, assuming that all the studies are judged to be equally
reliable, the best estimate of the LC50 may be derived by calculating the geometric mean of the available
alternative values (after adjustment to constant hardness).  Uncertainty around the best estimate may then
be based on the observed inter-study variability, using the basic principles for choosing PDFu's as
described in Appendix B.

Uncertainty in Extrapolation of TRVs

In general, extrapolation of TRVs across species or endpoints is not desirable, since the
magnitude and direction of any potential error is generally not known.  Sometimes, extrapolations
between species are attempted based on allometric scaling models that seek to adjust toxicity values
accounting for differences in body weight.  Alternatively, physiologically-based pharmacokinetic (PBPK)
models that seek to account for differences in a number of other physiological variables (metabolism rate,
organ size, blood flow, etc.) can be used.  However, the validity of these models is often not well
established.  In those cases where these models are used, and where the uncertainty in the model is judged
to warrant quantitative evaluation, the primary source of the model should be consulted in order to derive
an estimate of the uncertainty in the quality of the extrapolation and in the parameters of the model.  As
noted earlier, PRA may capture uncertainty associated with model input parameters, but does not usually
capture all sources of uncertainty in the model.  In particular, most models of this sort are designed to
extrapolate only the average response as a function of dose, and are not intended to extrapolate variability
between individuals at a specified dose.  When no mathematical model is available to support quantitative
extrapolation across species, exposure duration or endpoint, professional judgment and/or policy may be
used to select extrapolation factors to account for the uncertainty. 
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The risk assessor should ensure that the risk manager understands the uncertainty associated with
any model selected and applied, and that the results of the calculations (point estimate or PRA) are
conditional upon the model selected.

Uncertainty in Parameters of the Dose-Response Models

When toxicological exposure-response data are fit to mathematical equations, the fitting software
will usually provide quantitative information on the uncertainty in the best estimates for each of the
model parameters.  For example, in the dichotomous model illustrated in Exhibit 4-3, the output from the
BMDS software included the following information on the uncertainty in the parameters of the best-fit
logistic equation:

Parameter Best Est Std Error (SE)

a -4.80 0.83

b 0.101 0.019

Because the uncertainty in the best estimate of each model parameter is asymptotically normally,
uncertainty in the parameters may be modeled as:

PDFu (parameter i)=NORMAL(best estimate of parameter i, SE of parameter i) 

Note that the parameters of the model are generally not independent, and generally should not be treated
as such.  Thus, when modeling the uncertainty in the parameters of the best-fit exposure-response model,
the PDFv's for the parameters should be correlated according to the correlation matrix or the variance-
covariance matrix, as provided by the modeling software.

4.7.4 UNCERTAINTY IN RESPONSE

If the risk characterization phase of the risk assessment focuses on an estimation of the
distribution of responses rather than the distribution of HQ values, the uncertainty in the distribution of
responses can be evaluated using two-dimensional Monte Carlo techniques using PDFu's for the
parameters of the exposure and exposure-response models derived as described above.  The same
graphical output may be used for this presentation as was illustrated in Figure 4-9, except that the x-axis
is response rather than HQ.  This format is illustrated in Figure 4-10 for a dichotomous endpoint (e.g.,
acute lethality).  In this example, the average probability of response among the members of the exposed
population (shown in the graph by the black diamond symbols) is 8.2%, with a confidence bound around
the mean of 4.9 to 12.8%.  This is equivalent to concluding that about 8.2% of the population is expected
to suffer acute lethality, but the true fraction dying could range from 4.9 to 12.8%.
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Figure 4-10.  Example Presentation of Uncertainty in Response.

4.7.3 UNCERTAINTY IN HAZARD QUOTIENT

Once the uncertainty in exposure and/or toxicity distributions has been characterized as described
above, there are a number of options for presenting the resultant uncertainty in the HQ (or HI, if
appropriate and applicable for summing HQs) distributions.  Figure 4-11 shows one simple graphical
format, where the point estimate of the TRV is superimposed on the uncertainty bounds of the exposure
distribution (upper panel), or the uncertainty bounds of the TRV are superimposed on the best estimate of
exposure (lower panel).  One could also superimpose the range of TRVs over the range of exposures, to
capture most of the uncertainty in the HQ.  Furthermore, such distributional outputs should always show
the point estimate ranges of CTE and RME exposures in respect to the ranges of TRVs, for use in weight-
of-evidence to help interpret the PRA and point estimate results.  The advantage of this format is that no
additional Monte Carlo modeling is needed to derive initial descriptors of uncertainty in risk.  For
example, in the upper panel it may be seen that the best estimate of the fraction of the population exposed
at a level below the TRV is about 83%, but that this is uncertain due to uncertainty in the exposure
estimates, and the true percent below the TRV might range from 74 to 90%.  Similarly, in the bottom
panel, the best estimate of the fraction of the population below the TRV is also about 83%, but due to
uncertainty in the TRV the actual value could range from 64 to 91%.  Uncertainty could also be presented
by showing a combined graph with both ranges of exposure and TRVs, such as described below.



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 4 ~ December 31, 2001

Page 4-36

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 1.0 10.0 100.0

Ingested Dose (mg/kg-day)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Best 
estimate 
of TRV

Best estimate of exposure

Lower bound on exposure

Upper bound on exposure

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 1.0 10.0 100.0

Ingested Dose (mg/kg-day)

C
um

ul
at

ive
 P

ro
ba

bi
lit

y

Best estimate of exposure

Lower bound on TRV

Upper 
bound on 
TRV

Best 
estimate 
of TRV

Figure 4-11.  Example Presentation of Uncertainty in Exposure and TRV.
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Figure 4-12.  Example Presentation of Uncertainty in HQ Estimates.

A more complete characterization of uncertainty in HQ may be achieved by using PRA to
combine the uncertainty in both the exposure and the TRV terms, resulting in the uncertainty bounds on
the HQ distribution itself (see Figure 4-12).  In this example, it may be seen that 63% of the exposed
population is estimated to have an HQ below 1.0, but that this is uncertain due to uncertainty in both the
exposure distribution and the TRV, and that the true fraction of the population below a level of concern
(HQ < 1) could range from 45 to 81%.    

4.8 INTERPRETING RESULTS OF AN ECOLOGICAL PRA

In some cases, the information contributed by a PRA may provide a more complete
characterization of risks to a population of receptors than can be obtained by using point estimate
methods.  However, whether by PRA or by point estimate or a combination, the results of the risk
assessment must be interpreted to reach a risk management decision. 

In contrast to the case for human health risk assessments (where default risk-based decision rules
are well established), there are no established default decision rules for identifying when risks to
ecological receptors are and are not of concern.  In the point estimate approach, EPA guidance (U.S. EPA
1992b, 1995) recommends consideration of both the RME and CTE exposure/dose estimates along with
TRVs based on both LOAELs and NOAELs (U.S. EPA 1997a) to reach a risk management decision.  The
same principle applies to probabilistic ERAs. 

In some cases, interpretation of an ecological PRA is relatively simple.  For example, if the
distribution of HQ values calculated using an appropriate NOAEL-based TRV are less than 1.0 for nearly
all members of the population, then it is likely that risks are within an acceptable range for the population. 
Conversely, if the distribution of HQ values calculated using a LOAEL-based TRV are significantly
greater than 1.0 for most members of an exposed population, then it is likely that risks are not acceptable
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for the population.  However, for cases which fall between these bounding conditions (and for cases
where one needs to clearly define the boundaries of potential excess risks for a gradient of contamination
and exposures), the level of risk or response that is considered acceptable must be defined by the risk
assessor and the risk manager on a site-specific and receptor-specific basis.  This evaluation should take
the following factors into account:

(1) The Risk Management Goal

The risk management objective for most Superfund ERAs is defined as population sustainability
(U.S. EPA, 1999).  In this case, harm to some members of the exposed population may be acceptable, if
that harm does not lead to an overall reduction in population viability.  This situation (protection of a
population rather than protection of individuals) is sometimes equated with use of the CTE (average)
receptor as the basis for risk management decision making.  That is, if the HQ for the CTE receptor is
below a level of concern, it is sometimes assumed that population risks are acceptable.

However, the choice of the CTE receptor as the basis for risk management decision making may
not be sufficiently protective in all cases.  For the vast majority of wild populations, the proportion of the
population that must be protected to ensure population stability will be unknown.  At a small number of
sites, a population biologist may be able to provide some information.  Moreover, the percentile of the
CTE receptor in the exposure or risk distribution may vary depending on the shape of the distribution. 
The proportion of the population experiencing exposure greater than that of the CTE receptor could range
from less than 10% up to 50% or even higher.  Also, the ecological significance of an adverse effect on
some members of a population depends on the nature of the stressors and on the life history and
population biology of the receptor species.  Because of these complexities, use of the CTE as a decision
threshold for nonthreatened or endangered species may be appropriate in a small number of cases, but risk
assessors and risk managers should realize that the choice of the CTE receptor requires a species- and
endpoint-specific justification and the CTE should not be used as the default basis for a risk management
decision.  Rather, for the majority of ERAs, the risk management decision should be based on the RME
receptor or an upper percentile of the distribution of variability in risk/exposure.

(2) The Toxicological Basis of the TRV

The biological significance of a distribution of variability in HQ cannot be interpreted without a
proper understanding of the nature of the TRV being used to evaluate the distribution.  This includes the
nature of the toxicological endpoint underlying the TRV, its relevance to the assessment endpoint, and the
shape (steepness) of the dose-response curve.  For example, an HQ of 2 based on an EC20 for reduction
in reproductive success would likely be interpreted as more significant toxicologically than an HQ of 2
based on the EC20 for an increase in liver weight.  Likewise, an HQ of 2 based on an LClow for acute
lethality would be more significant if the dose-response curve for lethality were steep than if it were
shallow, since it would be easier to cause greater response with smaller increases in exposure to
contaminants.
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(3) The Characteristics of the Receptor

Ultimately, the question which must be assessed is whether an effect of degree "x" occurring in
"y" percent of the population is biologically and ecologically significant.  This, in turn depends on the
attributes of the receptor being evaluated.  For example, a reduction of 10% in the reproductive success of
a fecund and common species (e.g., the field mouse) might not lead to a significant reduction in
population number, while the same effect could be of concern in a species with lower fecundity and/or
lower population density (e.g., the moose).  Thus, the interpretation of an analysis of variability in
exposure and/or effect often requires the input of a trained population biologist with expertise in the
receptor of concern.

Because of these issues, there is no default rule for what level of effect is and is not acceptable for
an exposed ecological population; except for the case of no potential excess risks where the RME
exposures do not exceed the TRV based on a NOAEL, assuming there is reasonable confidence in those
exposure and toxicity values.  In some cases, mathematical models may be available for predicting the
population-level consequences of a given pattern of effects (e.g., see ECOFRAM 1999a for some aquatic
population models), but in general the extrapolation from a distribution of individual responses to an
estimation of population-level effects is difficult.  For this reason, close consultation between the risk
manager and the ecological risk assessor is necessary for translating results of an ERA into an appropriate
and successful risk management decision.

4.9 GUIDELINES FOR PLANNING AND PERFORMING A PROBABILISTIC ERA

4.9.1 PLANNING AN ECOLOGICAL PRA

Chapter 2 provides a general discussion of the key steps that should be followed when planning a
PRA.  These guidelines are equally applicable to ecological PRA as to human health PRA.  Of the key
steps in the process, most important are the following:

Dialogue Among Stakeholders

As discussed in Section 4.2, the decision if and when to perform an ecological PRA is an SMDP
shared by risk assessors, risk managers, and stakeholders, including members of the public,
representatives from state or county environmental agencies, tribal government representatives, natural
resource trustees, private contractors, and potentially responsible parties (PRPs) and their representatives. 
A scoping meeting should be held after the completion of the baseline risk assessment in order to discuss
the potential purpose and objectives of a PRA, and to identify the potential value of the analysis to the
risk management process.  If it is decided to perform at least an initial PRA evaluation, subsequent
meetings of a similar type should occur iteratively in order to assess whether any further effort is
warranted.

Preparation of a Workplan

Any PRA beyond the simplest screening level evaluation should always be accompanied by a
workplan.  The purpose of the workplan is to ensure that all parties agree on the purpose and scope of the
effort, and on the specific methods, data, and procedures that will be used in the PRA.  Workplans should
be developed according to available guidance for workplans for nonprobabilistic ERA (U.S. EPA, 1992b,
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EXHIBIT 4-8 

  EXAMPLE ELEMENTS OF A WORKPLAN FOR ECOLOGICAL PRA

1.  Introduction/Overview
Conceptual site model
Assessment endpoints
Indicator species
Measures of exposure and effect

2.  Description of Exposure and Risk Models
Basic exposure models (fate and transport, uptake, food web, intake, etc.)
Basic risk models (HQ, dichotomous response, continuous response)

3.  Results from a Point Estimate Assessment
CTE and RME risk estimates from baseline evaluation

4.  Rationale why a PRA will be helpful
Goals of the assessment (variability, uncertainty, both)
Expected benefit to risk manager

5.  Description of the Proposed PRA
Exposure scenarios to be evaluated
Output variables to be modeled in variability and/or uncertainty space

6.  Proposed PDFs, and their basis
Method for performing sensitivity analysis and for selecting key variables
Data source for characterizing key variables
Approach for selecting and parameterizing key variables
Proposed list of PDFs for exposure variables (optional but desirable)
Method for dealing with the concentration term
Method for dealing with correlations

7.  Proposed Software and Simulation Approach
Commercial or custom
Monte Carlo or Latin Hypercube
Number of Iterations
Method(s) for sensitivity analysis

8.  Preliminary Results (optional, but helpful)
Results of a screening level evaluation
Identification of variables where more effort is needed to improve the
  distribution function

1997a) and should consider three elements: (1) the 16 guiding principles of MCA (U.S. EPA, 1997b);
(2) the eight guidelines for PRA report submission (U.S. EPA, 1997b); and (3) the tiered approach to
ERA (U.S. EPA, 1997a).  Development of a workplan for PRA is discussed in greater detail in Chapter 2,
and Exhibit 4-8 summarizes the key elements of a proper workplan.  The workplan must be submitted to
the BTAG coordinator and/or regional ecotoxicologist for review and for approval by the risk manager. 
The EPA strongly recommends that PRPs who wish to perform PRAs of ecological risk involve the
Agency in the development of a workplan in order to minimize chances of significant disagreement, as is
required by EPA policy.
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4.9.2 EVALUATING AN ECOLOGICAL PRA

When an ecological PRA is submitted to EPA for consideration, it will be reviewed in order to
determine if it has been performed in accord with sound principles of ERA (U.S. EPA, 1997a, 1998), and
with sound principles of PRA (U.S. EPA, 1997b).  A general checklist that may be helpful to reviewers is
provided in Appendix F, and key features of this checklist are summarized in Exhibit 4-9.  Eight specific
conditions for acceptance of a PRA submitted to EPA are provided in U.S. EPA (1997b).

At the discretion of EPA risk assessor or risk manager, the PRA report may be submitted for
additional EPA internal review and/or an external review process in accord with Agency guidelines for
conducting peer reviews (U.S. EPA, 2001).  The external peer review may be used in cases where the
issues are complex or contentious and the opinions of outside expert peer reviewers can improve the
PRA.

4.10 EXAMPLE OF THE TIERED PROCESS IN ERA

As discussed in detail in Chapter 2, one of the key elements in the risk assessment process is
deciding if and when further analysis is warranted.  This includes decisions regarding whether to employ
PRA calculations to supplement point estimate calculation, and if so, what level of effort to invest in
those PRA calculations.  The following section presents a relatively simple hypothetical example
illustrating how the tiered approach might operate at a site where ecological risk is an important concern.

EXHIBIT 4-9

CHECKLIST FOR INCLUDING A PRA AS PART OF THE ERA (SEE APPENDIX F)

• All risk assessments should include point estimates prepared according to current Superfund national and
regional guidance.

• A workplan must be submitted for review and approval by the appropriate EPA regional project manager
(RPM) and/or BTAG coordinator prior to submission of the PRA.

• A tiered approach should be used to determine the level of complexity appropriate for the ERA.  The
decision to ascend to a higher level of complexity should be made with the risk manager, regional risk
assessor and other stakeholders.

• The eight conditions for acceptance presented in the EPA policy on PRA (U.S. EPA, 1997b) should be
clearly addressed by each PRA submitted to the Agency.

• Information in the PRA should possess sufficient detail that a reviewer can recreate both the input
distributions and all facets of the analysis.  This includes copies of published papers, electronic versions
of necessary data and other materials deemed appropriate by EPA.
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Problem Formulation

PestCorp is a former chemical manufacturing facility that produced mainly chlorinated pesticides
10 to 20 years ago.  Data collected on the PestCorp property indicate that a number of spills or releases of
chlorinated pesticides took place when the facility was in operation, and that site soils are broadly
contaminated, especially with pesticide X.  This contaminated soil has lead to impacts on a nearby lake of
about 300 acres that receives surface water runoff from the PestCorp site.  Samples from the lake reveal
low but detectable levels of pesticide X in water, with relatively high values in sediment and in the tissues
of a variety of aquatic organisms (crayfish, snails, benthic macroinvertebrates and fish).  The
concentration values in all media (water, sediment, aquatic organisms) tend to be highest in the part of the
lake receiving runoff from the PestCorp property, with a gradient of diminishing values at locations
further away from the area where runoff enters the lake.

A BTAG committee formed by EPA to identify potential ecological concerns at the site
recognized that many different species could be exposed to the contaminants in the lake, including
aquatic receptors residing in the lake (fish, invertebrates, aquatic plants), as well as mammals and birds
that frequent the lake for food or water.  Because pesticide X is lipophilic and tends to biomagnify in the
food web, the BTAG decided that the highest risks would likely occur in higher-level predators such as
mammalian omnivores, and selected the racoon as a good indicator species to represent this trophic
group.  Pathways of exposure that were identified as warranting quantitative evaluation included
(a) ingestion of water, (b) ingestion of aquatic food items, and (c) incidental ingestion of sediment while
feeding or drinking at the lake.  The BTAG determined that the assessment endpoint was protection of
mammalian omnivore populations.

Point Estimate Risk Evaluation

A series of iterative screening-level point estimate calculations (Steps 1 to 2 of the 8-step ERAGS
process) were performed to investigate whether or not there was a basis for concern at the site.  Initial
calculations using simplified and conservative inputs (i.e., exposure based on the maximum measured
concentration in each medium, an area use factor of 1, and the most conservative available TRVs)
indicated that the HQ value for pesticide X could be quite large.  Therefore, a refined screening level
evaluation was performed in which point estimates of CTE and RME risk were derived using the best
information currently available.  Key elements of the approach are summarized below:

• The CTE receptor was assumed to be exposed at a location where concentration values were the
average for the whole lake, and the RME receptor was assumed to be exposed at a location where
concentrations were equal to the 95th percentile of values from the lake.

• Because only limited data were available for measured concentrations of pesticide X in aquatic
prey items, the concentration values in aquatic prey were estimated using a linear
bioaccumulation model: C(prey)=C(sed) x BAF.  The BAF was estimated from the existing data
by finding the best fit correlation between the concentration values in sediment and crayfish at
7 locations in the lake:  C(crayfish)=5.04 x C(sed) (R2=0.792).

• The TRV values were based on a study in mink in which the toxicity endpoint was the percent
inhibition of reproductive success.
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Basic model
HQ = DI(total) / TRV
DI(total) = DI(water) + DI(food) + DI(sed)
DI(i) = C(i) * IR(i)*AUF(i)

Other Assumptions
C(diet) = C(sed) * BAF
IR(sed) = IR(diet) * F(sed)
IR(diet) = IR(total) * F(diet)

Category Variable Variable Units CTE RME
Inputs Concentration Concentration in water mg/L 0.12 0.38

Concentration in sediment mg/kg 24 77
BAF (sediment to aquatic prey) -- 5 5
Concentration in aquatic prey mg/kg 120 385

Intake Rates Total water intake rate L/kg-day 0.082 0.12
Total food intake rate kg/kg-day 0.06 0.09
Fraction of diet that is sed -- 0.03 0.06
Fraction of diet that is aquatic prey -- 0.15 0.25

Area Use Factors Fraction of total water ingested at the lake -- 0.3 0.6
Fraction of total diet from the lake -- 0.25 0.6

TRVs LOAEL-based TRV mg/kg-day 0.6 0.6
NOAEL-based TRV mg/kg-day 0.2 0.2

Results Daily Intake Water ingestion mg/kg-day 3.0E-03 2.7E-02
Sediment ingestion mg/kg-day 1.1E-02 2.5E-01
Aquatic prey ingestion mg/kg-day 2.7E-01 5.2E+00
Total mg/kg-day 2.8E-01 5.5E+00

HQ (LOAEL-Based) Water ingestion 4.9E-03 4.6E-02
Sediment ingestion 1.8E-02 4.2E-01
Aquatic prey ingestion 4.5E-01 8.7E+00
Total 4.7E-01 9.1E+00

HQ (NOAEL-Based) Water ingestion 1.5E-02 1.4E-01
Sediment ingestion 5.4E-02 1.2E+00
Aquatic prey ingestion 1.4E+00 2.6E+01
Total 1.4E+00 2.7E+01

Point Est. Values

EXHIBIT 4-10

REFINED SCREENING POINT ESTIMATE INPUTS AND RESULTS

These inputs and the resulting HQ values are shown in Exhibit 4-10.  As seen, estimated risks to the CTE
receptor approach or slightly exceed a level of concern (HQ=4.7E-01 to 1.4E+00), and risks to an RME
receptor are well above a level of concern (9.1E+00 to 2.7E+01).  The chief pathway contributing to the
dose and risk is ingestion of contaminant in aquatic food web items (crayfish, fish, amphibians, etc.).
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SMDP 1 at Step 2 of ERAGS

The BTAG considered these results to indicate that inhibition of reproduction was possible in at
least some members of the exposed population, but that the fraction of the population that was affected
and the degree of impact on the population was difficult to judge from the point estimate calculations. 
Based on this, a decision was made to conduct a screening level PRA in order to provide some additional
information on the magnitude and probability of risk.  

Workplan 1

The contractor performing the risk assessment developed a brief workplan that proposed an
approach for a screening level PRA.  The plan called for a Monte Carlo-based evaluation of variability in
exposure and risk among different members of the exposed mammalian omnivore (racoon) population.  In
brief, all exposure inputs that were treated as constants in the point estimate approach (i.e., were the same
for CTE and RME exposure) were also treated as constants in the PRA evaluation.  Because water
contributed so little to dose or HQ, this pathway was not evaluated in the PRA, but was accounted for by
adding in the point estimate values to the PRA results.  All variables that are fractions (i.e, may only
assume values between zero and one) were modeled as beta distributions, and all other variables were
modeled as lognormal.  For screening purposes, the parameters for all distributions were selected so that
the mean and 95th percentile values of the PDF's matched the corresponding CTE and RME point
estimates.  The BTAG reviewed this proposed approach and authorized PRA work to begin. 

Screening Level PRA Results

The screening level PRA inputs and the resulting estimates of the variability in HQ are shown in
Exhibit 4-11.  The CTE and RME point estimates are also shown for comparison.  As seen, the PRA
distribution of HQ values indicates that about 68% of the individuals in the population are likely to have
HQ values below 1E+00, while 32% have HQ values above 1E+00.

Comparison of the CTE point estimates of HQ to the mean HQ values derived by PRA reveals
the values are very close.  This is expected because both depend on the mean values of the input
variables, and the same mean values were used in both sets of calculations.  With regard to upper-bound
estimates, the RME point estimate values are at the 98th percentile of the PRA HQ distribution, within the
target range (90th to 99th) usually considered appropriate.  Note, however, that the 98th percentile is about
5-fold higher than the 95th percentile, emphasizing the high sensitivity of the RME HQ values to the
precise percentile of the RME.
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Data Category Variable Units Type param 1 param 2
Concentrations Concentration in water mg/L

Concentration in sediment mg/kg LN 24 33
BAF -- Const 5
Concentration in aquatic prey mg/kg Calculated

Intake Rates Total water intake rate L/kg-day
Total food intake rate kg/kg-day LN 0.060 0.060
Fraction of diet that is sed -- Beta 3.42 110.7
Fraction of diet that is aquatic prey -- Beta 6.10 34.6

Area Use Factors Fraction of total water ingested from lake --
Fraction of total diet from the lake -- Beta 1.20 3.59

TRVs LOAEL-based TRV mg/kg-day Const 0.6
NOAEL-based TRV mg/kg-day Const 0.2

Mean of PRA Point Est CTE Ratio 95th of  PRA Point Est. RME Ratio
NOAEL 1.44 1.42 0.99 5.4 27.4 5.06
LOAEL 0.48 0.47 0.99 1.80 9.12 5.06

Screening Level Distribution
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SCREENING LEVEL PRA CALCULATIONS OF HQ DISTRIBUTION



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 4 ~ December 31, 2001

Page 4-46

SMDP 2

The BTAG considered these results, and decided that it was very probable that pesticide X was
causing an effect in some members of the exposed population, but decided that a final risk management
decision would be facilitated by characterizing the distribution of responses (rather than the distribution
of HQ values).  The BTAG asked the contractor performing the work to develop a proposed approach for
characterizing the distribution of responses.

Workplan 2

The contractor obtained a copy of the toxicity report upon which the TRVs were based, and
determined that the study did include sufficient dose-response data to support reliable dose-response
modeling.  The contractor recommended that this be done using EPA's BMDS.  The BTAG approved this
proposed approach and authorized work to proceed.

PRA Refinement 1

The contractor fit the raw dose-response data (inhibition of reproduction in mink) to a number of
alternative models available in BMDS, and found that the dose-response curve could be well
characterized by the Hill Equation with nonconstant variance, as follows:

Mean Response at dose d (% decrease in reproduction)=(100 x d2.5)/(0.92.5 + d2.5)
Std. Dev. in Response at dose d (%)=SQRT[1.6@(mean response at dose d)1.3]

Based on this model, the point estimate LOAEL value (0.6 mg/kg-day) corresponds to an effect level of
about 27%, and the NOAEL of 0.2 mg/kg-day corresponds to an effect level of about 2%.

Using this exposure-response model in place of the point-estimate TRV values, the refined PRA
predicted a distribution of responses in the exposed population as shown in Exhibit 4-12.  As seen,
approximately 81% of the population was predicted to experience an effect on reproduction smaller than
10%, while 9% were expected to have a reduction of 10 to 30%, 4% a reduction of 30 to 50%, and 6% a
reduction of more than 50%.  On average across all members of the exposed population, the predicted
reduction in reproductive success was about 9%.
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Exposure-Response Model
Resp = Normal(Mean,Stdev)
Mean = a + b*x^n / (x^n + k^n)
Stdev = alpha*mean^rho

x Total daily intake
a 0
b 100
k 0.9
n 2.5
alpha 1.6
rho 1.3

Percent Percent
Reduction of Population

0-10% 81%
10-30% 9%
30-50% 4%
>50% 6%
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SIMULATED DISTRIBUTION OF RESPONSES
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SMDP3

The BTAG debated the likely population-level consequences of this predicted distribution of
responses in members of the exposed population.  After consulting with a field biologist with experience
in the population dynamics of mammals such as racoons, the BTAG decided that the distribution of
responses in the exposed population would cause a continued stress on the mammalian omnivore
community and that reductions in population number were likely over time.  Based on this, the risk
manager and the BTAG agreed that remedial action was desirable and that a range of alternative clean-up
strategies should be investigated.  This was performed using the methods described in Chapter 5 (see 
Exhibit 5-5).
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